

Plan



# Université Lumière Lyon 2 UFR de Sciences Economiques et de Gestion M2 - Chargé d'Etudes Economiques

ANOVA - Support de cours (3)

Rafik Abdesselam rafik.abdesselam@univ-lyon2.fr http://perso.univ-lyon2.fr/~rabdesse/Documents/

Année Universitaire 2024 - 2025



#### **ANOVA**

# M2 APE : Economic and Statistical Studies Data Science



Science des Données - Analyse des données



Plan

- Objectif
- 2 Introduction
- 3 ANOVA 1 facteur contrôlé
- 4 ANOVA 2 facteurs contrôlés

#### Objectif du cours





- Présenter les concepts et les conditions d'application de l'analyse de la variance.
- L'analyse de variance abrégée sous le terme anglais ANOVA (ANalysis Of VAriance) est une technique statistique permettant de comparer les moyennes d'un nombre quelconque de populations, contrairement à ce que pourrait laisser penser son nom.
- Son lien avec la régression est présenté, mais d'une façon générale, elle consiste à comparer plusieurs moyennes d'échantillons provenant de populations normales.
- Une large place est accordée dans ce cours aux exemples et exercices sur données réelles traités avec les logiciels SAS et SPAD.



#### Objectif du cours

#### ANOVA

- Pré-requis : Quelques notions de Statistique & Probabilités.
- Approche pédagogique : une séance de cours magistral et (1) séance de travaux dirigés. Supports informatique : Logiciels SPAD - SAS.
- Matériel pédagogique: (1) Polycopié de support de cours, (1) polycopié de travaux dirigés ainsi que de nombreux fichiers de données réelles (Tables SAS version 9.2. - Bases de données SPAD).
- Quelques références bibliographiques :
  - [1] Dagnelie, P. Analyse statistique à plusieurs variables. Gembloux, Presses agronomiques, 1986, 362p.
  - [2] Mervyn, G.Marasinghe, William J. Kennedy, SAS for Data Analysis, Intermediate Statistical Methods. Statistics and Computing, Springer, 2008.
  - [3] Saporta, G. Probabilités Analyse des données et Statistique. Editions technip, 1990.

#### Introduction

- Les techniques d'analyse de variance ANOVA sont des outils entrant dans le cadre du Modèle Linéaire Général et où une variable quantitative est expliquée par une ou plusieurs variables qualitatives.
- L'objectif est alors de comparer les moyennes empiriques de la variable quantitative observée pour les différentes catégories d'unités statistiques.
- Ces catégories sont définies par l'observation des variables qualitatives ou facteurs prenant différentes modalités ou encore de variables quantitatives découpées en classes ou niveaux.
- Une combinaison de niveaux définit une cellule, groupe ou traitement.

#### Introduction

- L'analyse de variance ANOVA est une technique statistique de tests et d'estimation qui permet d'analyser l'effet d'une voire plusieurs variables qualitatives sur une variable continue.
- L'ANOVA est très utilisée dans le contexte des plans d'expériences et des traitements des données expérimentales.
- D'un point de vue modélisation, l'ANOVA n'est autre qu'une régression multiple sur variables explicatives qualitatives (nominales).
- Les principes essentiels de l'analyse de la variance à un et à deux facteurs de classification avec/sans interaction seront exposés.

# Terminologie

- Les variables qualitatives sont appelées "facteurs ou critères" et leurs modalités "niveaux" du facteur. En présence de plusieurs facteurs, une combinaison de niveaux est un "traitement".
- Statistiquement, l'ANOVA est une généralisation du test de Student pour comparer plus de 2 moyennes.
- Il arrive fréquemment que les données soient groupées en classes selon certains critères ou facteurs tels que, par exemple, l'âge, l'appartenance sociale, la région géographique, etc.

#### Exemple introductif

- Prenons comme exemple, le cas d'une étude sur la fréquence d'utilisation des moyens de transports en commun.
- On peut supposer que celle-ci sera différente en fonction de l'âge des personnes interrogées.
- Il est donc naturel de diviser la population en classes d'âges (par exemple : adolescents, adultes, personnes âgées) avant d'effectuer l'échantillonnage.
- Sur la base des observations des différents échantillons constitués, la question sera de savoir s'il existe effectivement une différence significative d'utilisation des transports en commun entre les classes d'usagers considérées.
- Ceci revient à effectuer un test de comparaison multiple de moyennes.

### Exemple illustratif

Plan

 Les données représentent la fréquence journalière d'utilisation des moyens de transports en commun de trois groupes d'usagers.

Table: Fréquence d'utilisation des moyens de transports.

|         | Adolescents | Adultes | Personnes âgées |
|---------|-------------|---------|-----------------|
|         | 3           | 5       | 3               |
|         | 6           | 7       | 3               |
|         | 5           | 6       | 2               |
|         | 6           | 7       | 2               |
|         | 5           | 5       | 5               |
| Moyenne | 5           | 6       | 3               |

- Le problème consiste à détecter les différences, si elles existent, entre les moyennes des populations à partir desquelles ces observations ont été obtenues.
- Comparer la différence entre les moyennes des groupes d'usagers, mesurée en terme de variabilité, tout en tenant compte de la variabilité existant entre les usagers à l'intérieur

# Exemple: Cas particulier 1

 Pour bien distinguer entre ces deux types de variabilité, considérons les données des deux tableaux fictifs suivants.

Table: Exemple 1 de variation nulle à l'intérieur.

|         | Adolescents | Adultes | Personnes âgées |
|---------|-------------|---------|-----------------|
|         | 5           | 6       | 3               |
|         | 5           | 6       | 3               |
|         | 5           | 6       | 3               |
|         | 5           | 6       | 3               |
|         | 5           | 6       | 3               |
| Moyenne | 5           | 6       | 3               |

■ Toutes les observations dans chaque échantillon ont ici la même valeur. Il n'y a donc aucune variation à l'intérieur des groupes (ou échantillons d'usagers), mais il y a une variation entre les groupes d'usagers, puisque les moyennes d'échantillonnage sont différentes.

# Exemple: Cas particulier 2

Table: Exemple 2 de variation nulle entre les groupes.

|         | Adolescents | Adultes | Personnes âgées |
|---------|-------------|---------|-----------------|
|         | 8           | 4       | 3               |
|         | 6           | 5       | 7               |
|         | 5           | 9       | 7               |
|         | 4           | 7       | 8               |
|         | 7           | 5       | 5               |
| Moyenne | 6           | 6       | 6               |

- Par contre, dans ce cas, la moyenne de chaque groupe d'usagers est identique. Il n'y a donc pas de variation entre les groupes, mais il y a une variation à l'intérieur des groupes puisque toutes les observations dans chaque groupe n'ont pas la même valeur.
- En pratique, les observations obtenues ne sont ni exactement identiques, ni de moyennes égales ; elles sont hétérogènes comme les données de l'exemple introductif.

#### ANOVA à un facteur contrôlé

- Les données :
- n observations réparties dans p groupes ou échantillons.
- Chaque échantillon j (j = 1,p) contient  $n_i$  observations, correspondant à un niveau différent d'un facteur. Les tailles  $n_i$  des échantillons pouvant être égales ou différentes,  $n=\sum_{i}^{p} \mathsf{n}_{j}$ .
  - Le tableau suivant illustre un exemple de données.

| Ech.1            | Ech.2            |   | Ech.j            |   | Ech.p            |
|------------------|------------------|---|------------------|---|------------------|
| ×11              | X12              |   | $x_{1j}$         |   | $x_{1p}$         |
| X21              | :                | : | :                | : | ;                |
| X <sub>i</sub> 1 | Xi2              |   | :                | : | Xip              |
| :                | Xn22             | : | :                | : | ;                |
| :                |                  | : | $x_{n_{jj}}$     | : | ;                |
| Xn1 1            |                  |   | -                |   | :                |
|                  |                  |   |                  |   | $X_{n_{pp}}$     |
| $\overline{x}_1$ | $\overline{x}_2$ |   | $\overline{x}_j$ |   | $\overline{x}_p$ |

- $egin{align*} \bullet \, \overline{\mathbf{x}}_j &= \frac{\sum_{i=1}^{n_j} \mathbf{x}_{ij}}{n_j} & \text{la moyenne des } n_j \text{ observations du groupe } j. \\ \bullet \, \overline{\mathbf{x}} &= \frac{\sum_{j=1}^{n_j} \sum_{i=1}^{n_j} \mathbf{x}_{ij}}{n} &= \frac{\sum_{j=1}^{p} n_j \overline{\mathbf{x}}_j}{n} & \text{la moyenne globale.} \end{aligned}$



#### ANOVA à un facteur

- Le facteur à p niveaux est supposé avoir un effet uniquement sur les moyennes des distributions et non sur leur variance. Il s'agit d'un test de comparaison de p moyennes.
- D'une façon générale, il s'agit de tester s'il existe une différence "significative" entre les moyennes  $m_j$  (j=1,p) des p populations dans lesquelles ont été prélevés les p échantillons indépendants de taille  $n_j$  (j=1,p) de l'étude.
- En d'autres termes, effectuer le test statistique suivant :

```
\left\{ \begin{array}{l} \mathsf{H}_0: m_1 = m_2 = \ldots = m_p \ \ \mathsf{pas} \ \mathsf{de} \ \mathsf{diff\'erence} \ \mathsf{significative}. \\ \mathsf{H}_1: m_j \neq m_k \quad j \neq k \quad \mathsf{diff\'erence} \ \mathsf{significative}. \end{array} \right.
```

- Il suffit donc qu'une moyenne soit différente de toutes les autres pour que l'hypothèse nulle H<sub>0</sub> soit rejetée.
- Il s'agit là d'une généralisation à p populations du test classique (t de Student) de comparaison de moyennes de 2 échantillons.

#### Condition d'application - Ecarts

- Conditions d'application à vérifier avant toute utilisation d'une analyse de la variance :
  - 1 Les échantillons doivent être indépendants.
  - 2 Les distributions des populations considérées doivent être normales (hypothèse de normalité - test paramétrique).
  - 3 Les populations d'où sont prélevés les échantillons doivent posséder la même variance :  $\sigma^2 = \sigma_1^2 = \sigma_2^2 = \dots = \sigma_p^2$  (hypothèse d'homocédasticité).
- Pour procéder à une analyse de la variance, on s'intéresse à trois types d'écart :
  - Chaque observation par rapport à sa moyenne respective :  $(x_{ii} \overline{x}_i)$ .
  - **2** Chaque moyenne d'échantillonnage par rapport à la moyenne globale :  $(\overline{x}_i \overline{x})$ .
  - Chaque observation par rapport à la moyenne globale :  $(x_{ii} \overline{x})$ .

#### Tableau d'analyse de la variance à 1 facteur

 Les résultats obtenus sont résumés dans un tableau d'analyse de la variance (ou tableau ANOVA).

| Sources de      | Somme des                                                   | Degrés de | Carrés                               | F                    |
|-----------------|-------------------------------------------------------------|-----------|--------------------------------------|----------------------|
| variation       | carrés                                                      | liberté   | moyens                               |                      |
| Entre           | SC <sub>ent</sub>                                           |           | $CM_{ent} = s_{ent}^2$               | _                    |
| Inter / Between | $\sum_{j=1}^{p} n_j (\overline{x}_j - \overline{x})^2$      | p - 1     | $\frac{SC_{ent}}{p-1}$               | sent<br>sent<br>sint |
| Intérieur       | SC <sub>int</sub>                                           |           | $CM_{int} = s_{int}^2$<br>$SC_{int}$ |                      |
| Intra / Within  | $\sum_{j=1}^{p} \sum_{i=1}^{n} (x_{ij} - \overline{x}_j)^2$ | n - p     | $\frac{SC_{int}}{n-p}$               |                      |
| Totale          | SC <sub>tot</sub>                                           |           |                                      |                      |
| Total           | $\sum_{j=1}^{p} \sum_{i=1}^{n} (x_{ij} - \overline{x})^2$   | n - 1     |                                      |                      |

- La variation totale est la somme de 2 variations :  $SC_{tot} = SC_{ent} + SC_{int}$
- Cette propriété montre pourquoi la technique de comparaison de moyennes est appelée analyse de la variance, car ces sommes de carrés sont utilisées pour estimer des variances.
- En effet, le test réalisé consiste à décomposer la variance (constante) de x en deux parties : une variance interclasse  $(CM_{ent} = s_{ent}^2)$  et une variance intraclasse ou erreur  $(CM_{int} = s_{int}^2)$  puis à établir le test de Fisher (rapport de 2 variances

$$F = \frac{s_{ent}^2}{s_{i-1}^2}).$$

Plan



#### Approche régression :

Plan

■ On peut associé à l'analyse de la variance à 1 facteur le modèle de régression linéaire multiple suivant :

$$y_{ij} = \mu + \alpha_j + \varepsilon_{ij}$$
,  $i = 1, ..., n_j$  et  $j = 1, ..., p$ .

- où, yii désigne la ième observation du jème échantillon,  $\mu$  est la moyenne générale commune,  $\alpha_i$  est l'effet du niveau jème du facteur,  $\varepsilon_{ii}$  est l'erreur relative à l'observation  $y_{ii}$ .
- L'objectif est de tester certains paramètres du modèle notamment l'hypothèse nulle suivante :

$$H_0: \alpha_1 = \alpha_2 = ... = \alpha_p$$

ce qui signifie que les p facteurs ont un effet identique. L'hypothèse alternative étant formulée comme suit :

 $H_1$ : au moins une différence  $\alpha_i \neq \alpha_{i'}$   $j \neq j'$ c'est-à-dire que les  $\alpha_i$  ne sont pas tous identiques.

# Exemple d'application

■ Les données représentent le niveau de production de 27 cadres employés, affectés à une tâche d'assemblage et de vérification, selon leur statut dans l'entreprise.

Table: Niveau de Production selon le Statut - Niveau de responsabilité de l'employé.

|          | Junior |     | Intermédiaire |     |     | Supérieur |     |     |    |
|----------|--------|-----|---------------|-----|-----|-----------|-----|-----|----|
|          | 45     | 49  | 45            | 51  | 51  | 49        | 49  | 50  | 52 |
|          | 45     | 48  | 45            | 50  | 46  | 49        | 48  | 48  | 51 |
|          | 47     | 47  | 46            | 50  | 46  | 51        | 51  |     |    |
|          |        |     |               | 48  | 49  |           |     |     |    |
| Effectif | 9      |     |               | 11  |     |           | 7   |     |    |
| Moyenne  | 46.3   | 333 |               | 49. | 091 |           | 49. | 857 |    |

# Conditions d'application

- Effet du Statut de l'employé sur le niveau de Production.
- Hypothèse de normalité :

Table: The Univariate Procedure: Tests for Normality.

|               | Test         |   | Statistic |        | p-Value  |
|---------------|--------------|---|-----------|--------|----------|
| Junior        | Shapiro-Wilk | W | 0.851103  | Pr < W | 0.0766 ✓ |
| Intermédiaire | Shapiro-Wilk | W | 0.869325  | Pr < W | 0.0760 ✓ |
| Supérieur     | Shapiro-Wi∣k | W | 0.913363  | Pr < W | 0.4197 ✓ |

2 Hypothèse d'homoscédasticité - Egalité des variances :

Table: The GLM Procedure: Bartlett's Test for Homogeneity of Production Variance.

| Source   | DF | Chi-Square | Pr > ChiSq |
|----------|----|------------|------------|
| St at ut | 2  | 0.3344     | 0.8461 ✓   |



# Principaux résultats - SAS

Table: The MEANS Procedure: Analysis Variable: Production.

| Statut        | N  | Mean       | Std Dev   | Minimum | Maximum |
|---------------|----|------------|-----------|---------|---------|
| Junior        | 9  | 46.3333333 | 1.5000000 | 45.0000 | 49.0000 |
| Intermédiaire | 11 | 49.0909091 | 1.8140863 | 46.0000 | 51.0000 |
| Supérieur     | 7  | 49.8571429 | 1.5735916 | 48.0000 | 52.0000 |

Table: The ANOVA Procedure: Effet du Statut sur le niveau de production.

| Source | Sum of squares | DF | Mean square | F-value | Pr > F   |
|--------|----------------|----|-------------|---------|----------|
| Model  | 58.5300625     | 2  | 29.2650313  | 10.68   | 0.0005 ✓ |
| Error  | 65.7662338     | 24 | 2.7402597   |         |          |
| Total  | 124.2962963    | 26 |             |         |          |

# Principaux résultats - SAS

Localiser les disparités

Table: Means with the same letter are not significantly different.

| Tukey Grouping | Mean    | N  | Statut        |
|----------------|---------|----|---------------|
| A              | 49.8571 | 7  | Supérieur     |
| Α              | 49.0909 | 11 | Intermédiaire |
| В              | 46.3333 | 9  | Junior        |

Table: Comparisons significant at the 0.05 level are indicated by \*\*\*.

| Statut<br>Comparison | Difference<br>Between<br>Means | 95%     | Confidence<br>Limits |     |
|----------------------|--------------------------------|---------|----------------------|-----|
| S - I                | 0.7662                         | -0.8856 | 2.4181               |     |
| S - J                | 3.5238                         | 1.8020  | 5.2456               | *** |
| I - S                | -0.7662                        | -2 4181 | 0.8856               |     |
| l - J                | 2.7576                         | 1.2220  | 4.2932               | *** |
| J - S                | -3.5238                        | -5.2456 | -1.8020              | *** |
| J - I                | -2.7576                        | -4.2932 | -1.2220              | *** |

#### ANOVA à deux facteurs

- Supposons maintenant le cas où les n observations de l'échantillon sont classées selon 2 facteurs A et B respectivement à p et q modalités-niveaux.
- Les n observations peuvent être réparties dans un tableau à p lignes (facteur A) et q colonnes (facteur B).
- Les trois questions principales que l'on se pose lors d'une analyse de variance à 2 facteurs :
  - 1 Y a-t-il un effet du facteur A : les moyennes mesurées sur les p populations définies par le facteur A sont-elles différentes ?
  - 2 Y a-t-il un effet du facteur B : les moyennes mesurées sur les q populations définies par le facteur B sont-elles différentes ?
  - 3 Y a-t-il un effet conjugué des deux facteurs A et B : une interaction entre les moyennes du facteur A et celles du facteur B ?

| Sources de variation | Somme<br>carrés   | Degrés de<br>liberté | Carrés<br>moyens                             | F                                        |
|----------------------|-------------------|----------------------|----------------------------------------------|------------------------------------------|
| Facteur A            | $SC_{entA}$       | p - 1                | $CM_{entA} = \frac{SC_{entA}}{p-1}$          | CM <sub>entA</sub><br>CM <sub>int</sub>  |
| Facteur B            | $SC_{entB}$       | q - 1                | $CM_{entB} = \frac{SC_{entB}}{q-1}$          | CM <sub>entB</sub><br>CM <sub>int</sub>  |
| Interaction AB       | $SC_{entAB}$      | (p - 1)(q - 1)       | $CM_{entAB} = \frac{SC_{entAB}}{(p-1)(q-1)}$ | CM <sub>entAB</sub><br>CM <sub>int</sub> |
| Intérieur            | SC <sub>int</sub> | n - pq               | $CM_{int} = \frac{SC_{int}}{n-pq}$           |                                          |
| Total                | $SC_{tot}$        | n - 1                |                                              |                                          |

#### Exemple d'application

- Les données représentent le niveau de production de 27 cadres employés, affectés à une tâche d'assemblage et de vérification, selon leur statut - niveau de responsabilité et leur Sexe - genre dans l'entreprise.
- SPAD : Répartition de la production selon le statut et le Sexe de l'employé.

| Effectif<br>Moyenne<br>Ecart-type | Féminin | Masculin | Ensemble |
|-----------------------------------|---------|----------|----------|
|                                   | 9       | 2        | 11       |
| Intermédiaire                     | 49.778  | 46.000   | 49.091   |
|                                   | 1.030   | 0.000    | 1.730    |
|                                   | 2       | 7        | 9        |
| Junior                            | 48.500  | 45.714   | 46.333   |
|                                   | 0.500   | 0.881    | 1.414    |
|                                   | 5       | 2        | 7        |
| Supérieur                         | 50.400  | 48.500   | 49.857   |
|                                   | 1.356   | 0.500    | 1.457    |
|                                   | 16      | 11       | 27       |
| Ensemble                          | 49.813  | 46.273   | 48.370   |
|                                   | 1.236   | 1.286    | 2.146    |

# Conditions d'application

- Effet du Sexe de l'employé sur le niveau de Production.
- Hypothèse de normalité :

Table: The Univariate Procedure: Tests for Normality.

|          | Test         |   | Statistic |        | p-Value  |
|----------|--------------|---|-----------|--------|----------|
| Féminin  | Shapiro-Wilk | W | 0.869325  | Pr < W | 0.0974 ✓ |
| Masculin | Shapiro-Wi∣k | W | 0.851103  | Pr < W | 0.0736 ✓ |

2 Hypothèse d'homoscédasticité - Egalité des variances :

Table: The ANOVA Procedure: Levene's Test for Homogeneity of Production Variance

| Source | DF | Sum of<br>Squares | Mean<br>Square | F-Value | Pr > F   |
|--------|----|-------------------|----------------|---------|----------|
| Sexe   | 1  | 0.1027            | 0.1027         | 0.03    | 0.8546 ✓ |
| Error  | 25 | 7/1 2222          | 2 00 5/        |         |          |

#### Principaux résultats - SAS

- Effet du Statut et du Sexe de l'employé sur la production.
- 1 Significativité du modèle dans son ensemble.

| Source | Sum of squares | DF | Mean square | F-value | Pr > F   |
|--------|----------------|----|-------------|---------|----------|
| Model  | 99.1121693     | 5  | 19.8224339  | 16.53   | <.0001 ✓ |
| Error  | 25.1841270     | 21 | 1.1992441   |         |          |
| Total  | 124.2962963    | 26 |             |         |          |

2 Significativité des facteurs et de leur interaction.

| Source      | Type III SS | DF | Mean square | F-value | Pr > F   |
|-------------|-------------|----|-------------|---------|----------|
| SEXE        | 36.65908991 | 1  | 36.65908991 | 30.57   | <.0001 ✓ |
| STATUT      | 16.83835896 | 2  | 8.41917948  | 7.02    | 0.0046 ✓ |
| SEXE*STATUT | 2.70344328  | 2  | 1.35172164  | 1.13    | 0.3428   |

### Principaux résultats - SPAD

- Effet du Statut et du Sexe de l'employé sur la production.
- Significativité des niveaux des facteurs.

| lden Libellé         | Coeff.  | E.type | Т     | Proba.  | V test |
|----------------------|---------|--------|-------|---------|--------|
| CRITERE(S)           |         |        |       |         |        |
| FEMI - Féminin       | 1.4106  | 0.255  | 5.529 | 0.000 ✓ | 4.30   |
| MASC - Masculin      | -1.4106 | 0.255  | 5.529 | 0.000 🗸 | -4.30  |
| INTE - Intermédiaire | -0.2598 | 0.355  | 0.731 | 0.473   | -0.72  |
| JUNI - Junior        | -1.0415 | 0.360  | 2.896 | 0.009 🗸 | -2.63  |
| SUPE - Supérieur     | 1.3013  | 0.367  | 3.541 | 0.002 🗸 | 3.10   |

#### Principaux résultats - SPAD

- Effet du Statut et du Sexe de l'employé sur la production.
- Significativité de l'interaction des niveaux des facteurs.

| lden Libellé         | Coeff   | E.Type | Т       | Proba. | Vitest |
|----------------------|---------|--------|---------|--------|--------|
| Interaction(s)       |         |        |         |        |        |
| FEMI - Féminin       |         |        |         |        |        |
| INTE - Intermédiaire | 0.4783  | 0.355  | 1.347   | 0.192  | 1.30   |
| FEMI - Féminin       |         |        |         |        |        |
| JUNI - Junior        | -0.0177 | 0.360  | 0.049   | 0.961  | -0.05  |
| FEMI - Féminin       |         |        |         |        |        |
| SUPE - Supérieur     | -0.4606 | 0.363  | 1.268   | 0.219  | -1.23  |
| MASC - Masculin      |         |        |         |        |        |
| INTE - Intermédiaire | -0.4783 | 0.355  | 1.347   | 0.192  | -1.30  |
| MASC - Masculin      |         |        |         |        |        |
| JUNI - Junior        | 0.0177  | 0.360  | 0.049   | 0.961  | 0.05   |
| MASC - Masculin      |         |        |         |        |        |
| SUPE - Supérieur     | 0.4606  | 0.363  | 1.268   | 0.219  | 1.23   |
| Constante            | 48.1487 | 0.255  | 188.722 | 0.000  | 12.42  |

Plan

#### Approche régression :

On peut associé à l'analyse de la variance à 2 facteurs le modèle de régression suivant :

$$y_{ijk} = \mu + \alpha_j + \beta_k + \gamma_{jk} + \varepsilon_{ijk},$$
  

$$i = 1, ..., m; j = 1, ..., p \text{ et } k = 1, ..., q.$$

 Les trois questions principales évoquées précédemment se traduisent de la façon suivante :

**1** 
$$H_0: \alpha_1 = \alpha_2 = ... = \alpha_p$$

2 
$$H_0: \beta_1 = \beta_2 = ... = \beta_a$$

3 
$$H_0: \gamma_{11} = \gamma_{12} = ... = \gamma_{jk} = ... = \gamma_{pq}$$

■ Modèle de régression à (1 + p + q + pq) paramètres à estimer.



#### Instructions sous SAS & SPAD

 Le tableau suivant résume la syntaxe des procédures et instructions SAS nécessaires pour obtenir les principaux résultats de l'ANOVA - ANCOVA.

| Hypothèse        | Test               | Instruction SAS     | Procédure    |
|------------------|--------------------|---------------------|--------------|
| Normalité        | histogramme        | nom-var / normal    | univariate   |
| Normalité        | Shapiro-Wilk       | normal              | univariate   |
| Normalité        | qq-plot            | nom-var / normal    | univariate   |
| Normalité        | pp-plot            | nom-var / normal    | capability   |
| Homoscédasticité | Bartlett ou Levene | means / hovtest =   | anova ou glm |
| ANOVA 1 facteur  |                    |                     | anova ou glm |
| ANOVA 2 facteurs |                    |                     | lmg          |
| Comparaisons     |                    | means / t cldiff    | anova ou glm |
| Disparités       |                    | means / tukey lines | anova ou glm |

■ Instructions d'un projet SPAD pour l'ANOVA - ANCOVA.

| Groupe de méthodes        | Méthode                                               |
|---------------------------|-------------------------------------------------------|
| Statistiques descriptives | Tests statistiques - Test de normalité (Shapiro-Wilk) |
| Scoring et modélisation   | Vareg (Régression, analyse de variance-covariance)    |