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Abstract. In this paper, we present and evaluate a novel method for feature selection for Multiclass Support Vector Machines
(MSVM). It consists in determining the relevant features using an upper bound of generalization error proper to the multiclass
case called the multiclass radius margin bound. A score derived from this bound will rank the variables in order of relevance,
then, forward method will be used to select the optimal subset. The experiments are firstly conducted on simulated data to test
the ability of the score to give the correct order of relevance of variables and the ability of the proposed method to find the subset
giving a better error rate than the case where all features are used. Afterward, four real datasets publicly available will be used
and the results will be compared with those of other methods of variable selection by MSVM.
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1. Introduction

In a classification problem, the relevant variables are
not known a priori. The importance of selection is jus-
tified by the possibility of existence of correlated, noise
and/or redundant variables which usually give signif-
icant error rates [34,36]. Indeed, the variables selec-
tion essentially allows to improve the performances of
classification models by using only the variables that
are important for the studied problem, reduce time and
cost of calculation and facilitate understanding of the
process generating information.

These advantages are to be exploited for large di-
mensions problems and especially when the number of
variables is very large compared to the number of ob-
servations. This is the case, for example of the prob-
lems related to DNA microarray gene expression pro-
files, where genes are considered as variables and the
number of observations is generally low for cost rea-
sons. Indeed, some studies suggest that only a small
number of genes is sufficient [22,35] and for a bi-
nary classification problem, 50 genes are usually suffi-
cient [7].

*Corresponding author. E-mail: achchab@estb.ac.ma.

There are generally three categories of methods for
variables selection [2,12,17]: Filter, Wrapper and Em-
bedded. In the first category, the selection is made a
priori before the estimation of forecasting model, it
consists in testing each variable independently of oth-
ers and then order them according to a given criterion.
The Wrapper methods select variables after developing
model and thus take into account the influence of vari-
ables on the performances of the model. The last cat-
egory (Embedded) incorporates the selection of vari-
ables during the learning process.

In the context of SVM, binary or multiclass, the de-
veloped models do not allow an automatic selection of
variables and use all available ones.

In binary case, several approaches were proposed to
show the possibility of variable selection with SVM.
These approaches can be grouped into two categories.
The first one, containing embedded methods, consists
in modifying the optimization program of SVM, so as
to integrate the selection in the classification process.
The second one, derives criteria from SVM to do se-
lection (wrapper approaches).

Within the first category, several new forms of SVM
were been proposed, the L0SVM [32], L1SVM [3,39],
combination of L0 and L1 SVMs [23] and the F∞-
norm SVM [40] are examples of these forms. Sim-
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ilarly, by deriving criteria from SVM, various ap-
proaches were presented, including the Recursive Fea-
ture Elimination algorithm SVM-RFE of Guyon et al.
[13] using the margin as a selection criterion and Rako-
tomamonjy’s approach [26], considered as extension
of SVM-RFE, using the upper bounds of the general-
ization error specifics to SVM.

In the multiclass case, as extension of the ap-
proaches of the first category, Wang and Shen [30,31]
replaced the L2-penalty in the MSVM model of Lee
et al. (MSVMLLW) [19] by the L1-penalty (L1MSVM).
Similarly, Zhang et al. [37] proposed a sup-norm
penalty which is more efficient and easier to implement
than that given by the L1MSVM solution. Other meth-
ods were also been proposed in this context [11,21].

Moreover, and as extension of SVM-RFE, several
techniques were presented, based either on a decom-
position method, selecting the variables for each pair
of classes and then extend the results to the multiclass
case [5,24,27] or on a direct approach, considering all
classes simultaneously [4,38].

However, in spite of the significant number of the
proposed extensions to the multiclass case and their
good performance compared to some existing tech-
niques, no method is best or optimal [8,38] and the is-
sue is still relevant.

Studying the various extensions, we note that al-
though the theoretical bases and the good performance
of Rakotomamonjy’s approach [26] in selecting the rel-
evant attributes in the binary case, no study, to our
knowledge, has used an upper bound of the general-
ization error proper to the multiclass case to select the
optimal subset of variables.

In this paper, we propose a new method for ranking
and selecting the relevant variables in the multiclass
case (assigning one class to each example), based on
the upper bound of the generalization error called the
Radius Margin bound (RM) [10]. This bound is spe-
cific to the multiclass case and only applicable to the
hard margin MSVMLLW model [19] i.e., without train-
ing error and to the MSVM2 model of Guermeur et
al. [10].

The multiclass RM bound is presented as an exten-
sion of the binary radius margin bound [29] while tak-
ing into account the characteristics of the multiclass
case. It was proposed and used by Guermeur et al.
[10] for model selection. In this paper, we will use it
for model and variables selection for a hard margin
MSVMLLW model.

The proposed method consists of three steps: firstly,
and since we work with the MSVMLLW model, we

choose its optimal parameters that minimize the multi-
class RM bound in the presence of all variables (model
selection); secondly, we rank the variables in order of
relevance, and finally, proceeding by forward method,
we choose the optimal subset minimizing the error cal-
culated on a validation set.

The rest of the paper is organized as follows: Sec-
tion 2 presents the MSVMLLW model and the RM upper
bound of the generalization error. The proposed proce-
dure for variable ranking and optimal subset’ selection
is given in Section 3. The data used, results of experi-
ments and comparisons are presented in Section 4 fol-
lowed by a general conclusion and some perspectives
of this work.

2. MSVMLLW model and RM bound

In the framework of Multiclass SVM (MSVM), we
are interested in q categories classification problems
(2 < q < ∞). The goal is to estimate q decision func-
tions fk(x) and to classify the observations according
to the classification rule:

�f (x) = arg max fk(x); k = 1, 2, . . . , q.

The estimation of the decision functions is done using
a set of pairs of independent and identically distributed
observations (xi, yi), i = 1, . . . , n, called training set,
where x is the description of an object belonging to the
descriptions space X described by ‘P ’ variables and Y

is the set of categories ‘y’ identified by their indices
[1, q].

Several approaches were proposed in the context of
MSVM, belonging either to the category of decompo-
sition or direct methods [9].

In this work, we will test the performance of the
multiclass RM bound to perform the variables selec-
tion for a hard margin MSVMLLW model. This section
will briefly present the properties of this model and de-
scribe the RM bound.

2.1. The MSVMLLW model

As all direct approaches [6,10,33], the MSVMLLW
model solves the multiclass problem directly without
decomposition, estimating ‘q’ decision functions si-
multaneously by solving one optimization program. It
is considered as the most theoretically based of MSVM
models [19] as it is the only one that implements
asymptotically the Bayes decision rule.
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The optimization problem is to solve, subject to the
constraint

∑q

k=1 fk = 0, the objective function of the
form:

min
f

1

n

n∑
i=1

q∑
k=1

I (yi �= k)
[
fk(xi) + 1

]
+

+ λ

q∑
k=1

p∑
j=1

w2
kj . (1)

• The first term I (yi �= k)[fk(xi) + 1]+ represents
the loss function, which measures the difference
between the estimation and the reality. This term
can also be written as C

∑n
i=1

∑
k �=yi

ξik , with ξik

are the slack variables.
• The second term λ

∑q

k=1

∑p

j=1 w2
kj (λ ∈ R, de-

termined by cross-validation), measures the abil-
ity or the complexity of the hypothesis space, also
equal to the inverse of the k separators’ margins
to maximize.

• fk(x) = 〈wk,�(xi)〉 + bk , 1 � i � n, with

– (wk, bk) the parameters of the kth separator to
estimate.

– �(xi) the nonlinear transformation of xi from
the original space to the feature space if the data
are not linearly separable. If not, �(xi) = xi .

Problem solving is done using the Lagrangian, and
the nonlinear transformation of the data will be re-
placed by a kernel function.

2.2. The multiclass radius margin bound

The multiclass RM upper bound of the generaliza-
tion error that we will use is a direct extension of the
two-class radius margin bound. Used for model selec-
tion, it is considered as the easiest and the most popular
of the generalization error’s upper bounds.

Guermeur et al. [10] demonstrate that the number
of errors denoted Ln, resulting from the application
of leave-one-out cross-validation procedure for a hard
margin q-category MSVMLLW model trained on dn, is
upper bounded as follows:

Ln � (q − 1)3

q
D2

n

n∑
i=1

max
1�k�q

α∗
ik, (2)

• dn: the training sample,
• n: the size of the training sample,
• q: the number of categories,

• Dn: the diameter of the smallest sphere containing
the data set in the original or feature space,

• α∗
ik: the Lagrange parameters resulting from the

resolution of the optimization program (1).

Since the value given by leave-one-out cross valida-
tion is an almost unbiased estimator of the generaliza-
tion error, a variable is considered as relevant accord-
ing to its influence on this error by measuring its con-
tribution to minimize the second term of (2) which is
the RM bound.

3. The proposed procedure for variables ranking
and optimal subset’ selection

The multiclass RM bound is generally used for
model selection; it means to choose the optimal param-
eters of the MSVM model. These parameters to opti-
mize are: C, representing the weight of the training er-
rors and σ the parameter of the Gaussian kernel.1

Note that a large value of C means a big weight of
errors and thus get closer to a hard margin learning,
and, conversely, a small value reflect acceptance of er-
rors and therefore a soft margin learning.

The idea in this article is to extend the Rakotoma-
monjy’s method of variable selection to the multiclass
case using the multiclass RM bound while selecting
model using this same bound.

The proposed procedure is based on a score called
zero-order score proposed for two class problems [26],
whose value will rank variables. The zero-order score
of a variable is the value of a criterion (the RM bound
in our case) when this variable is removed. We will
consider a variable as most relevant when its suppres-
sion greatly increases the value of the bound and there-
fore, contributes to the minimization of the generaliza-
tion error.

The RM bound (2) depends on three factors: the
number of categories q, the diameter of the smallest
sphere containing data Dn and the Lagrange parame-
ters α∗

ik .
The first element ‘q’ is constant and independent of

the number of variables, in contrast to the two other pa-
rameters Dn and α∗

ik . Indeed, an object is represented
by its coordinates in space, so its position changes nec-
essarily by removing a variable and thus the diame-
ter of the sphere. Similarly, when removing a variable,
data which are inputs to estimate the model change,
and therefore α∗

ik , model outputs, change too. Thus, the

1Considered as the best choice [15] if we decide to change the
data space.
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research of the relevant variables will be based on the
product:

D2
n

n∑
i=1

max
1�k�q

α∗
ik. (3)

Once the order of relevance of the variables is es-
tablished, and given that an exhaustive research of the
optimal subset is very complicated even impossible for
high dimensional data, we proceed to choose the opti-
mal subset using the forward method. For this, we con-
struct a sequence of models/subsets by incorporating
each time a variable in decreasing order of relevance
and we choose the subset giving the error rate mini-
mum calculated on a validation set.

The proposed procedure for ranking and selecting
relevant variables, for a hard margin MSVMLLW model,
follows the three following steps:

Step 1 (Choice of the parameters of MSVMLLW model).
In this step, we choose the parameters of the hard mar-
gin MSVMLLW model which minimize the multiclass
RM bound, and therefore the generalization error, in
presence of all variables. These parameters that will be
used in the next step to rank variables.

The SVM method is based on the idea of finding a
linear separator in a specific space, so if data are not
linearly separable, i.e. a linear separator doesn’t ex-
ist in the original space, we move to a called feature
space by projecting data in another space of higher di-
mension so as to find a linear separator. This transfor-
mation of the data is done using the kernel functions
[14,29]. Thus, to choose the optimal parameters of the
hard margin MSVMLLW model, we work, first, in the
original space using a linear kernel. In this case, there
will be only the value of the parameter C to determine.
If we are unable to work without training error, we pro-
ceed to change the space of the data and work with a
Gaussian kernel as first choice. In this case, we have to
set the values of the two parameters C and σ .

Step 2 (Variables ranking). In this step, we rank vari-
ables in order of relevance according to the values of
their zero-order scores. For this, we re-estimate, re-
moving each time a variable, the MSVMLLW model and
we compute the value of the product (3).

The variables with highest scores are the most rel-
evant given that their suppression increases the value
of the multiclass RM bound and thus the value of the
generalization error.

Step 3 (Choice of the optimal subset of variables). The
last step is to choose the optimal subset. For this, we

construct, using forward method, a sequence of mod-
els. The first one contains the first relevant variable, the
second one contains the first two relevant variables and
so on until we integrate all the variables in decreasing
order of relevance. Then, we calculate the error rates
on a validation set. The model giving the minimum er-
ror rate is chosen as the best model with the optimal
number of variables.

Note that for the first two stages, parameters se-
lection and variables ranking, we must work without
training error, as these two steps are based on the RM
bound which is applicable to a hard margin MSVMLLW
model. By contrast, it is not mandatory to do so in
Step 3, because we no longer use the RM bound. In-
deed, we conduct simulations with combinations of
values of C and σ until we find the values that mini-
mize the validation error.

Also, we insist on the idea that the main contribu-
tion of this article is in giving the order of relevance of
variables which was not been done on the multiclass
case with direct approaches of MSVM before. That
means that we can change the third step and use an-
other method to select the optimal subset from the or-
der given in second step, here we use forward method
but backward method or other procedures can also be
used.

4. Experimental results and comparisons

In this section, we present the tests showing the
ability of the score based on the RM bound to rank
variables and, therefore, to select the optimal subset.
Six datasets are considered, including two simulated
databases and four real sets. For all data sets, sev-
eral simulations are conducted to find the parameters
of the MSVMLLW model minimizing the multiclass
RM bound (Step 1) and to select the optimal subset
(Step 3). Simulations and results have been obtained
using the MSVMpack of Lauer et al. [18] allowing to
train the MSVMLLW model and giving the parameters
α∗

ik as output. The diameter Dn of the smallest sphere
containing the data has been calculated using the hard
margin Support Vector Data Description (SVDD) al-
gorithm [1,28].

4.1. Simulated data

The used data are linearly separable in original or
features space. Each observation is described by P

variables (x1, x2, . . . , xP ) where 2 are relevant and the
others are noise variables.
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The 2 relevant variables are generated from a
mixture Gaussian. The remaining variables are in-
dependent and identically distributed generated from
N(0, 1).

4.1.1. Example 1
The data of this first example are generated as de-

scribed by Zhang et al. [37], with n1 = 250 ob-
servations as training set, n2 = 1000 observations
as validation set and n3 = 50000 observations as
testing set, q = 5 equally weighted classes (each
class has the same number of observations) and P =
10 variables with (x3, x4, . . . , x10) are 8 noise vari-
ables and (x1, x2) are relevant for all classes generated
from a mixture Gaussian as follow: for each class k,
the two variables are generated independently from
N(μk, σ

2I2), with σ = √
2 and for k = 1, 2, . . . , q:

μk = 2

(
cos

(
[2k − 1]π

q

)
, sin

(
[2k − 1]π

q

))
.

To estimate the parameters of the hard margin
MSVMLLW model in the presence of all variables
(based on the training set), we first worked with a lin-
ear kernel. The results show that this kernel did not al-
low to train the model without error. We then tried a
Gaussian kernel which gave a zero training error.

The model estimation using a Gaussian kernel re-
quires to set the values of the parameters C and σ .
For C, high values are used in order to penalize errors
and therefore obtain a hard margin model. Simulations
showed that the value C = 1000 allows learning with-
out error for different values of σ .

To set the value of σ , we have conducted several
simulations to select the value that, keeping zero train-
ing error, minimizes the generalization error via its up-

per bound RM (2). The term (q−1)3

q
being constant, we

Table 1

The values of D2
n

∑n
i=1 max1�k�q α∗

ik
in terms of the values of σ

σ
∑n

i=1 max1�k�q α∗
ik

Dn D2
n

∑n
i=1 max1�k�q α∗

ik

0.5 312.4516 15.8043 78042.9108

1.0 314.5438 14.0641 62216.7636

1.5 403.8787 9.3509 35315.4766

2.0 744.4999 6.0851 27567.9379

2.5 1419.4191 4.3059 26318.3012

3.0 3249.519 3.2828 35019.4164

3.5 7532.2469 2.6707 53726.0107

4.0 14059.3651 2.2835 73316.7771

4.5 27448.5771 2.0225 112286.639

5.0 48089.0095 1.8343 161809.899

choose the value that minimizes the product (3). The
simulations results are described in Table 1.

The minimum of the upper bound is reached for σ =
2.5. The model will therefore be estimated with C =
1000 and σ = 2.5.

The second step is to test the ability of the zero-order
score to give the order of relevance of variables. For
this purpose, we calculate, each time removing a vari-
able, the

∑n
i=1 max1�k�q α∗

ik and the diameter Dn of
the smallest sphere enclosing the data in features space,
using the parameters chosen in Step 1. The results are
reported in Table 2.

The most relevant variable is the one that maximizes
the value of the zero-order score which is equal to the
value of the product D2

n

∑n
i=1 max1�k�q α∗

ik when the
variable is removed. The order of relevance of vari-
ables obtained according to Table 2 is as follows:

x1, x2, x4, x7, x8, x10, x3, x5, x6, x9.

The proposed score has successfully classify the first
two variables which are the most relevant in the first
two ranges.

Table 2

Zero-order scores of the 10 variables

Removed
variable

∑n
i=1 max1�k�q α∗

ik
Dn Zero order score of variables

(D2
n

∑n
i=1 max1�k�q α∗

ik
)

x1 4704.2294 3.4967 57519.5574

x2 4482.486 3.5298 55849.5973

x3 2201.1227 4.0958 36926.1656

x4 2545.6538 4.0479 41712.1738

x5 2227.1454 4.0309 36188.5102

x6 2154.1154 4.0386 35135.0135

x7 2345.0198 4.0536 38533.8045

x8 2320.8622 4.0376 37835.9383

x9 2082.4165 4.0631 34378.2499

x10 2166.5158 4.1308 36968.3719
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After ranking variables, we estimate the models to
select the one that minimizes the validation error (us-
ing the validation set) and gives the optimal subset. For
this, we build 10 databases: the first contains the first
relevant variable, the second contains the first two rele-
vant variables. . . etc. And in order to select the optimal
parameters, we try different values of C and σ for each
model.

The results of seven combinations of C and σ are
presented in Fig. 1. The best subset for all combina-
tions contains the first two variables.

The best combination giving the minimum error rate
is C = 100 and σ = 2. Table 3 shows the errors ob-
tained with those values according to the number of
used variables on the validation set.

The last step is to calculate the testing error rate on
the test sample of 50000 observations using the set of
the two first variables and the parameters chosen from

Fig. 1. Validation error rates in terms of the number of used variables
for seven combinations of C and σ .

Table 3

Validation error rates with C = 100 and σ = 2

Used variables Validation error in %

(x1) 58.6

(x1, x2) 37.7

(x1, x2, x4) 42.3

(x1, x2, x4, x7) 45.9

(x1, x2, x4, x7, x8) 46.0

(x1, x2, x4, x7, x8, x10) 52.0

(x1, x2, x4, x7, x8, x10, x3) 52.1

(x1, x2, x4, x7, x8, x10, x3, x5) 50.5

(x1, x2, x4, x7, x8, x10, x3, x5, x6) 50.7

(x1, x2, x4, x7, x8, x10, x3, x5, x6, x9) 48.8

validation (C = 100 and σ = 2). The final training
sample contains data used in training and validation
(N = 1250). The testing error rate resulting is 39.57%.
Using all features the testing error rate is 53.74%.

4.1.2. Example 2
In the simulation example in Section 4.1.1, the two

first variables are relevant for all classes, however,
in reality, some variables might be important for one
class, and not for another. In this section, we will study
this case and see if our score is able to identify the rel-
evant variables.

For this, we generate a second dataset with the same
characteristics as the first one (n1 = 250 observations,
n2 = 1000 observations, n3 = 50000 observations,
and P = 10 variables) except that the relevant vari-
ables x2 and x3 are as follow: x2 is relevant only for
the classes 2 and 4, x3 is relevant only for the classes
1, 3, 5 and x3 is more relevant than x2 as it’s important
for 3 classes. The 8 remaining variables are noise ones.

The numerous simulations (as done in the first ex-
ample (Table 1)) have allowed to choose the type of
kernel (Gaussian) and to set the values of parameters
C and σ (C = 1000 and σ = 2) that allow to work
without training error, require a reduced calculation
time and minimize the value of the RM bound. Table 4
presents the order of relevance of variables according
to the values of zero-order score and reveals that the
score has successfully classified x3 in the first position
and x2 in second position.

Table 5 presents the obtained error rates using C =
10 and σ = 2 according to the number of used vari-
ables on the validation set (n2 = 1000 observations).
The best subset is the one containing the first two rele-
vant variables.

The last step is to calculate the testing error rate on
the test sample of 50000 observations using the set of
the two first variables and the parameters chosen from
validation (C = 10 and σ = 2). The final training
sample contains data used in training and validation
(N = 1250). The testing error rate resulting is 40.16%
which is better than that obtained using all features
(45.24%).

4.2. Real data

We divide this subsection on three parts, in the first
example we will compare the performances of our ap-
proach according to the number of variables with those
given by maximum relevance approach [25] using a
real dataset from UCI repository. In the second and
third examples, we will compare the classification re-
sults given by our approach to those of other methods
of variables selection by multiclass SVM.
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Table 4

Ranking of variables according to their zero-order scores

Removed
variable

∑n
i=1 max1�k�q α∗

ik
Dn Zero order score of

removed variable
Ranking

x1 1132.2971 5.3268 32129.8990 8

x2 1672.0327 4.8217 38873.5347 2

x3 1991.1498 4.7828 45548.7694 1

x4 1097.9851 5.4346 32428.9876 7

x5 1195.6819 5.3492 34214.1712 3

x6 1165.3138 5.3818 33752.0906 5

x7 1147.0951 5.4145 33629.5977 6

x8 1181.6572 5.3779 34176.5754 4

x9 1066.5453 5.3597 30639.0415 10

x10 1090.8932 5.3707 31466.7816 9

Table 5

Validation error rates with C = 10 and σ = 2

Used variables Validation error in %

(x3) 58.70

(x3, x2) 38.90

(x3, x2, x5) 41.50

(x3, x2, x5, x8) 40.30

(x3, x2, x5, x8, x6) 42.50

(x3, x2, x5, x8, x6, x7) 42.60

(x3, x2, x5, x8, x6, x7, x4) 44.60

(x3, x2, x5, x8, x6, x7, x4, x1) 44.50

(x3, x2, x5, x8, x6, x7, x4, x1, x10) 45.30

(x3, x2, x5, x8, x6, x7, x4, x1, x10, x9) 45.30

4.2.1. Example 1
In this section we compare the performances in clas-

sification of our approach to those of the well known
ranking approach maximum relevance consisting in
ranking variables according to the relevance to the tar-
get class using mutual information [25].

For this, we will use the waveform data set from UCI
repository containing 5000 observations, 40 variables
and 3 classes. All of the 40 attributes include noise, the
first 21 are important for class separation and the last
19 are noise variables with mean 0 and variance 1.

After having ranked the 40 variables in order of rel-
evance by maximum relevance approach and radius
margin based approach, on a training set of 3000 ob-
servations, we compare the performances of the two
methods according to the number of used variables in
decreasing order of relevance, using a validation set of
1000 observations.

The minimum validation error rate using the max-
imum relevance method is 33.5% obtained using the
first five variables among the 21 relevant ones, how-
ever, our approach based on the radius margin bound

Fig. 2. Validation error rates in terms of the number of used variables.

gave a better error rate 28.7% using the first six vari-
ables among the 21 relevant ones.

In the testing step, based on the remaining 1000
observations, the five variables of the maximum rele-
vance approach give an error rate of 33.1% and the six
features of our approach give 28.7% (see Fig. 2).

4.2.2. Example 2
The large dimensional dataset on which we test the

performances of our approach is the children cancer
data set [16] classifying the small round blue cell tu-
mors (SRBCTs) into four classes, namely neuroblas-
toma (NB), rhabdomyosarcoma (RMS), non-Hodgkin
lymphoma (NHL), et Ewing (EWS) using cDNA gene
expression profiles.

http://research.nhgri.nih.gov/microarray/Supplement/.

The data set includes 63 observations for training,
20 blind observations for testing and 2308 variables

http://research.nhgri.nih.gov/microarray/Supplement/
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(genes). It was presented for the first time by Khan et
al. [16] and has been used in the context of variable
selection by multiclass SVM by Zhang et al. [37].

We split the 63 observations into 50 for training and
13 for validation, then, we standardize the training set
to have zero mean and unit variance. The validation
and test sets are standardized based on the training set
parameters.

Afterward, in order to reduce the computation time,
we select 200 genes by the filter approach MRMR
(Maximum Relevance Minimum redundancy) [25],
known for its good performance in terms of reducing
the number of variables in large dimensions. These 200
genes on which we apply our approach.

After model selection, we proceed to rank the 200
features in order of relevance, then, using forward
method, we select the best subset giving the error rate
minimum on the validation set and the best combina-
tion of C and σ .

Table 6 summarizes the results obtained with the se-
lected combination (C = 10 and σ = 2) and the best
subset containing the first 9 genes.

The proposed approach based on the multiclass RM
bound predicts correctly the classes of the unseen 20
test observations using the first 9 genes.

Comparing these classification results to those of
some previous studies on this data set, we deduce that
they are far better in terms of the number of genes
needed and the recognition rates obtained. Indeed, se-
lecting variables for multiclass SVM using adaptive
sup-norm regularization (Adp-supII), Zhang et al. [37],
obtained one error, using the first 47 genes and using
the L1 norm, 63 genes were required. Furthermore, us-
ing Neural Networks (NN), getting a zero error rate
was possible using the first 96 genes [16].

Table 6

Classification and selected genes from SRBCT data

Validation Testing error
rateObtained

error
Selected genes

(Image Id)

MRMR + RM 0/13 325182 0/20

143306

814444

878652

813707

796258

842820

1435862

784224

However, some studies criticize the use of filters as
pre-processing step and claim that some times the good
results are due to the use of these filter.

In order to verify that the results obtained are not
due to the preprocessing step selecting 200 genes by
MRMR filter, we apply directly our approach based on
the RM bound to the 2308 genes.

As before, we select the parameters minimising the
RM bound in presence of all variables, then we rank
them in order of relevance and we select, based on the
validation set, the best subset and the best combination
of C and σ using forward method. The results are pre-
sented in Table 7.

The results of classification show the effectiveness
of our approach to select a very reduced subset of vari-
ables which give good classification rates on unseen
data in large dimension.

A summary of the classification results for SRBCT
dataset is presented in Table 8.

4.2.3. Example 3
For this last example, we will test the performances

of our approach on two real datasets from UCI reposi-
tory and we will compare the obtained testing errors to
those obtained by the method of Li et al. presented in
[20].

The datasets are soybean-s and stepp-order data con-
taining both 47 samples, 35 variables and 4 classes. For
comparison, we will apply the same steps as Li et al.

Table 7

Classification and selected genes from the 2308 original ones

Validation Testing error
rateObtained

error
Selected genes

(Image Id)

RM 0/13 325182 1/20

770394

629896

377461

365826

796258

Table 8

Classification results and selected genes for SRBCT dataset

Method Number of
selected genes

Testing error
rate

L1 [37] 63 1/20

Adp-supII [37] 47 1/20

NN [16] 96 0/20

RM 6 1/20

MRMR + RM 9 0/20
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Table 9

Classification and selected variables

Validation Testing error rate Error rate with
all featuresObtained

error
Number of selected

variables

Soybean-s 0 7.25 0.0217 ± 0.0251 0.2608 ± 0.2534

Stepp-order 0 7.25 0.0326 ± 0.0416 0.1630 ± 0.2111

For this, we first transform the attributes into the inter-
val [−1, 1], then, we split the datasets into two equal
parts in terms of the number of observations per class,
the first part for training and validation and the second
for testing. Such split is performed several times.

For each dataset, after having chosen the parame-
ters minimizing the RM bound for the hard margin
MSVMLLW, we rank the variables in order of relevance
based on the training sets, then, we select the optimal
subsets and the parameters using the validation sets. Fi-
nally, the testing error is calculated on the test sample.
Table 9 lists the results obtained.

The numbers of the selected variables are given in
average from the different splits. The results in terms
of the testing error rates give the average errors with
their corresponding standard deviation.

In comparison to the case where all the features are
used, the results confirm that our approach can increase
significantly the recognition rate and reduce the num-
ber of variables.

Furthermore, comparing these results to those of Li
et al., we note that the proposed method produce a
slightly better result for the soybean dataset. For the
stepp-order data, the obtained error rate is not far from
that obtained in [20].

5. Conclusion and perspectives

The results of the studies on variable selection by
multiclass SVM show the effectiveness of using this
technique to reduce the dimensions and to improve the
classifications accuracy. In this paper, we proposed a
new approach, based on the multiclass radius margin
upper bound of the generalization error, to give the or-
der of relevance of the variables and the optimal sub-
set. As a result, the proposed method gives the correct
order of relevance of variables for the simulated data,
and significantly reduces the error rate for all used data
sets.

In fact, one of the advantages of our method is that it
uses the MSVMLLW model which is the most theoret-
ically based of MSVM models [19] and as a wrapper

approach, selecting the variables after the estimation
of the model, takes into account the influence of each
variable on the performance of the estimated model.

A constraint for the application of our procedure in
very large dimensions consists in the required com-
putation time, which is important given the need to
re-estimate the MSVM model for each variable in or-
der to calculate the zero order scores. To deal with
this problem, as done in the second real example, we
propose to combine our approach with an appropriate
filter method which will filter a big number of noise
variables before applying the radius margin bound.
The results obtained on some high dimensional cancer
datasets were very good in terms of the obtained test-
ing error rate.
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