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Abstract In many application domains, the choice of a proximity measure affect

directly the result of classification, comparison or the structuring of a set of objects.

For any given problem, the user is obliged to choose one proximity measure be-

tween many existing ones. However, this choice depend on many characteristics.

Indeed, according to the notion of equivalence, like the one based on pre-ordering,

some of the proximity measures are more or less equivalent. In this paper, we pro-

pose a new approach to compare the proximity measures. This approach is based

on the topological equivalence which exploits the concept of local neighbors and

defines an equivalence between two proximity measures by having the same neigh-

borhood structure on the objects. We compare the two approaches, the pre-ordering

and our approach, to thirty five proximity measures using the continuous and binary

attributes of empirical data sets.

1 Introduction

Comparing objects, situations or things leads to identifying and assessing hypothesis

or structures that are related to real objects or abstract matters. In other words, for
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understanding situations that are represented by a set of objects and be able to act

upon, we must be able to compare them. In natural life, this comparison is achieved

unconsciously by the brain. In the artificial intelligence context we should describe

how the machine might perform this comparison. One of the basic element that we

have to specify, is the proximity measure between objects.

The proximity measures are characterized by a set of mathematical properties.

The main objects, that we seek to explain in this paper, are how we can assess and

which measure we can use to prove: are two specifics proximity measures equiva-

lent or not? What is the meaning of equivalence between two proximity measures?

In which situation can we consider that two proximity measures are equivalent? If

two measures are equivalent, does it means that they are substitutable between each

other? Does the choice of a specific proximity measure between individuals im-

mersed in a multidimensional space, like R p, influence or not the result of clustering

or k-nearest neighbors? These objects are important in many practical applications

such as retrieval information area. For instance, when we submit a query to a search

engine, it displays, so fast, a list of candidate’s answers ranked according to the de-

gree of resemblance to the query. Then, this degree of resemblance can be seen as

a measure of dissimilarity or similarity between the query and the available objects

in the database. Does the way that we measure the similarity or the dissimilarity be-

tween objects affect the result of a query? It is the same in many other areas when we

seek to achieve a grouping of individuals into classes. It is obvious that the outcome

of any algorithm, based on proximity measures, depends on the measure used.

A proximity measure can be defined in different ways, under assumptions and ax-

ioms that are sought, this will lead to measures with diverse and varied properties.

The notion of proximity covers several meanings such as similarity, resemblance,

dissimilarity, etc. In the literature, we can find a lot of measures that differ from each

other depending on many factors such as the type of the used data (binary, quanti-

tative, qualitative fuzzy...). Therefore, the choice of proximity measure remains an

important issue.

Certainly, the application context, the prior knowledge, the type of data and many

other factors may help in the identification of the appropriate measure. For instance,

if the objects to be compared are described by Boolean vectors, we can restrict to

a class of measures specifically devoted. However, the number of measure’s candi-

dates might remain quite large. In that case, how shall we proceed for identifying

the one we should use? If all measure’s candidates were equivalent, is it sufficient

enough to take one randomly? In most cases, this is not true. The present work

aims to solve this problem by comparing proximity measures. To do this, three ap-

proaches are used.

1. For example, [Richter, 1992] used, several proximity measures on the same data

set and then, aggregated arithmetically their partial results into a single value.

The final result can be seen as a synthesis of different views expressed by each

proximity measure. This approach avoids treating the subject of the comparison

which remains a problem in itself.
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2. By empirical assessment: many papers describe methodologies for compar-

ing performance of different proximity measures. To do that, we can use ei-

ther benchmarks, like in liu,[Strehl et al., 2000] where outcomes are previously

known, or criteria considered as relevant and allowed the user to identifying the

appropriate proximity measure. We can cite some work in this category as shown

in [Noreault et al., 1980], [Malerba et al., 2002], [Spertus et al., 2005].

3. The objective of this paper belongs to the category of comparison proximity mea-

sures. For example, we checked if they have common properties [Lerman, 1967],

[Clarke et al., 2006] or if one can express as function of the other as in these ref-

erences [Zhang and Srihari, 2003], [Batagelj and Bren, 1995] or simply if they

provide the same result by clustering operation [Fagin et al., 2003], etc.. In the

last case, the proximity measures can be categorized according to their degree of

resemblance. The user can identify measures that are equivalent to those that are

less [Lesot et al., 2009], [Bouchon-Meunier et al., 1996].

We propose in this paper a new method to compare the proximity measures,

which is related to the third category in order to detect those identical from the oth-

ers and, to group them into classes according to their similarities. The procedure of

comparing two proximity measures consists to compare the values of the induced

proximity matrices [Batagelj and Bren, 1995], [Bouchon-Meunier et al., 1996] and,

if necessary, to establish a functional and explicit link when the measures are equiv-

alent. For instance, to compare two proximity measures, [Lerman, 1967] focuses

on the preorders induced by the two proximity measures and assess their degree of

similarity by the concordance between the induced preorders by the set of pairs of

objects. Other authors, such as [Schneider and Borlund, 2007b], evaluate the equiv-

alence between two measures by a statistical test between the proximity matrices.

The numerical indicators derived from these cross-comparisons are then used to

categorize measures. The common idea of these works is based on a principal that

says that, two proximity measures are closer if the pre-ordering induced on pairs of

objects does not change. We will give clearer definitions later.

In this paper, we propose another approach of comparing proximity measures.

We introduce this approach by using the neighbors structure of objects which con-

stitutes the main idea of our work. We call this neighborhood structure the topology

induced by the proximity measure. If the neighborhood structure between objects,

induced by a proximity measure u i, does not change relatively from another proxim-

ity measure u j, this means that the local similarities between objects do not change.

In this case, we may say that the proximity measures u i and u j are in topological

equivalence. We can thus calculate a value of topological equivalence between pairs

of proximity measures and then, we can visualize the closeness between measures.

This latest could be achieved by an algorithm of clustering.

We will define this new approach and show the principal links identified be-

tween our approach and the one based on preordonnance. So far, we didn’t find

any publication that deals with the problem in the same way as we do. The

present paper is organized as follows. In section 2, we will describe more pre-

cisely the theoretical framework; in section 3, we recall the basic definitions for



4 Djamel Abdelkader Zighed, Rafik Abdesselam, and Ahmed Bounekkar

the approach based on the induced preordonnance; In section 4, we will intro-

duce our approach of topological equivalence; in section 5, we will provide some

evaluations of the comparison between the two approaches and will try to high-

light possible links between them. The further work and open trails, provided

by our approach, will be detailed in section 6, the conclusion. We will high-

light some remarks, on how this work could be extended to all kind of proxim-

ity measures whatever the representation space: binary [Batagelj and Bren, 1995],

[Lerman, 1967], [Warrens, 2008], [Lesot et al., 2009], fuzzy [Zwick et al., 1987],

[Bouchon-Meunier et al., 1996], symbolic, [Malerba et al., 2002], etc.

2 Proximity measures

A measure of proximity between objects can be defined as part of a mathematical

properties and as the description space of objects to compare. We give, in Table 1,

some conventional proximity measures defined on R p.

Measure Formula

u1 : Euclidean uE (x,y) =
√

∑
p
i=1(xi − yi)2

u2 : Mahalanobis uMah(x,y) =
√

(x− y)t ∑−1(x− y)

u3 : Manhattan (City-block) uMan(x,y) = ∑
p
i=1 |xi − yi|

u4 : Minkowski uMinγ (x,y) = (∑
p
i=1 |xi − yi|γ )

1
γ

u5 : Tchebytchev uTch(x,y) = max1≤i≤p |xi − yi|
u6 : Cosine Dissimilarity uCos(x,y) = 1− <x,y>

‖x‖‖y‖

u7 : Canberra uCan(x,y) = ∑
p
i=1

|xi−yi |
|xi |+|yi |

u8 : Squared Chord uSC(x,y) = ∑
p
i=1(

√
xi −

√
yi)

2

u9 : Weighted Euclidean uEw (x,y) =
√

∑
p
i=1 αi(xi − yi)2

u10 : Chi-square uχ2 (x,y) = ∑
p
i=1

(xi−mi)
2

mi

u11 : Jeffrey Divergence uJD(x,y) = ∑
p
i=1(xi log

xi
mi

+ yi log
yi
mi
)

u12 : Histogram Intersection Measure uHIM(x,y) = 1− ∑
p
i=1

(min (xi ,yi))

∑
p
j=1

y j

u13 : Pearson’s Correlation Coefficient uρ (x,y) = 1−|ρ(x,y)|

Table 1 Some measures of proximity.

Where, p is the dimension of space, x = (xi)i=1,...,p and y = (yi)i=1,...,p two points in Rp,

(αi)i=1,...,p ≥ 0, ∑−1 the inverse of the variance and covariance matrix, γ > 0, mi =
xi+yi

2
and

ρ(x,y) denotes the linear correlation coefficient of Bravais-Pearson.

Consider a sample of n individuals x,y, . . . in a space of p dimensions. Individu-

als are described by continuous variables: x = (x1, . . . ,xp). A proximity measure u

between two individuals points x and y of R p is defined as follows:

u : Rp ×Rp �−→ R

(x,y) �−→ u(x,y)
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with the following properties, ∀(x,y) ∈ R p ×Rp:

P1: u(x,y) = u(y,x) P2: u(x,x)≥ (≤) u(x,y) P3: ∃α ∈ R u(x,x) = α.

We can also define δ : δ (x,y) = u(x,y)−α a proximity measure that satisfies the

following properties, ∀(x,y) ∈ R p ×Rp :

T1: δ (x,y)≥ 0 T2: δ (x,x) = 0 T3: δ (x,x) ≤ δ (x,y).

A proximity measure that verifies properties T1, T2 and T3 is a dissimilarity

measure. We can also cite other properties such as:

T4: δ (x,y) = 0 ⇒∀z ∈ Rp δ (x,z) = δ (y,z) T5: δ (x,y) = 0 ⇒ x = y

T6: δ (x,y)≤ δ (x,z)+δ (z,y) T7: δ (x,y)≤max(δ (x,z),δ (z,y))
T8: δ (x,y)+ δ (z, t)≤ max(δ (x,z)+ δ (y, t),δ (x, t)+ δ (y,z)).

Measures: Type 1 Similarities Dissimilarities

Jaccard (1900) s1 =
a

a+b+c
u1 = 1− s1

Dice (1945), Czekanowski (1913) s2 =
2a

2a+b+c
u2 = 1− s2

Kulczynski (1928) s3 =
1
2
( a

a+b
+ a

a+c
) u3 = 1− s3

Driver and Kroeber, Ochiai (1957) s4 =
a√

(a+b)(a+c)
u4 = 1− s4

Sokal and Sneath s5 =
a

a+2(b+c) u5 = 1− s5

Braun-Blanquet (1932) s6 =
a

max(a+b,a+c) u6 = 1− s6

Simpson (1943) s7 =
a

min(a+b,a+c) u7 = 1− s7

Measures: Type 2

Kendall, Sokal-Michener (1958) s8 =
a+d

a+b+c+d
u8 = 1− s8

Russel and Rao (1940) s9 =
a

a+b+c+d
u9 = 1− s9

Rogers and Tanimoto (1960) s10 =
a+d

a+2b+2c+d
u10 = 1− s10

Pearson φ (1896) s11 =
ad−bc√

(a+b)(a+c)(d+b)(d+c)
u11 =

1−s11
2

Hamann (1961) s12 =
a+d−b−c
a+b+c+d

u12 =
1−s12

2

bc u13 =
4bc

(a+b+c+d)2

Sokal and Sneath (1963), un5 s14 =
ad√

(a+b)(a+c)(d+b)(d+c)
u14 = 1− s14

Michael (1920) s15 =
4(ad−bc)

(a+d)2+(b+c)2
u15 =

1−s15
2

Baroni-Urbani and Buser (1976) s16 =
a+

√
ad

a+b+c+
√

ad
u16 = 1− s16

Yule (1927) s17 =
ad−bc
ad+bc

u17 =
1−s17

2

Yule (1912) s18 =
√

ad−
√

bc√
ad+

√
bc

u18 =
1−s18

2

Sokal and Sneath (1963),un4 s19 =
1
4
( a

a+b
+ a

a+c
+ d

d+b
+ d

d+c
) u19 = 1− s19

Sokal and Sneath (1963), un3 u20 =
b+c
a+d

Gower & Legendre (1986) s21 =
a+d

a+
(b+c)

2
+d

u21 = 1− s21

Hamming distance u22 = ∑
p
i=1(xi − yi)

2

Table 2 Some proximity measures for binary data.

We can find in [Batagelj and Bren, 1992] some relationships between these in-

equalities: T 7(Ultrametric) ⇒ T 6(Triangular) ⇐ T 8(Buneman)
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A dissimilarity measure which satisfies the properties T5 and T6 is a distance.

For binary data, we give in Table 2 some conventional proximity measures de-

fined on {0,1}p.

Let x = (xi)i=1,...,p and y = (yi)i=1,...,p two points in {0,1}p representing re-

spectively attributes of two any objects x and y, we have: a = ∑
p
i=1 xiyi (resp.

d = ∑
p
i=1(1− xi)(1− yi) the cardinal of the subset of the attributes possessed in

common (resp. not possessed by any of the two objects). b = ∑
p
i=1 xi(1− yi) (resp.

c = ∑
p
i=1(1−xi)yi the cardinal of the subset of the attributes possessed by the object

x (resp. y) and not possessed by y (resp. x). Type 2 measures take in account also the

cardinal d. The cardinals a, b, c and d are linked by the relation a+ b+ c+ d = p.

3 Preorder equivalence

3.1 Comparison between two proximity indices

It is easy to see that on the same data set, two proximity measures u i and u j gener-

ally lead to different proximity matrices. But can we say that these two proximity

measures are different? Many articles have been devoted to this issue. We can find

in [Lerman, 1967] a proposal which says that two proximity measures u i and u j are

equivalent if the preorders induced by each of the measures on all pairs of objects

are identical. Hence the following definition.

Definition 1. Equivalence in preordonnance: let n objects x,y,z... of R p and

any two proximity measures u i and u j on these objects. If for any quadruple

(x,y,z, t), ui(x,y) ≤ ui(z, t) ⇒ u j(x,y) ≤ u j(z, t) then, the two measures ui and u j

are considered equivalent.

This definition was subsequently reproduced in many papers such as the follow-

ing [Lesot et al., 2009], [Batagelj and Bren, 1995], [Bouchon-Meunier et al., 1996]

and [Schneider and Borlund, 2007a] but the last one do not mention [Lerman, 1967].

This definition leads to an interesting theorem, the demonstration is in the reference

[Batagelj and Bren, 1995].

Theorem 1. Equivalence in preordonnance: let two proximity measures u i and u j,

if there is a function f strictly monotone such that for every pair objects (x,y) we

have: ui(x,y) = f (u j(x,y)), then ui and u j induce identical preorders and therefore

they are equivalent: ui ≡ u j.

The inverse is also true, ie, two proximity measures that depend on each other

induce the same preorder and are, therefore, equivalent.

In order to compare proximity measures u i and u j, we need to define an index that

could be used as a dissimilarity value between them. We denote this by D(u i,u j).
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For example, we can use the following dissimilarity index which is based on preor-

donnance :

D(ui,u j) =
1
n4 ∑x ∑y ∑z ∑t δi j(x,y,z, t)

where δi j(x,y,z, t) =
{

0 if [ui(x,y)− ui(z, t)]× [u j(x,y)− u j(z, t)]> 0

or ui(x,y) = ui(z, t) and u j(x,y) = u j(z, t)
1 otherwise

D varies in the range [0,1]. Hence, for two proximity measures u i and u j, a value

of 0 means that the preorder induced by the two proximity measures is the same and

therefore the two proximity matrices of ui and uj are equivalent. The comparison

between indices of proximity has been studied by [Schneider and Borlund, 2007a],

[Schneider and Borlund, 2007b] under a statistical perspective. The authors propose

an empirical approach that aims to comparing proximity matrices obtained by each

proximity measure on the pairs of objects. Then, they propose to test whether the

matrices are statistically different or not using the Mantel test [Mantel, 1967]. In this

work, we do not discuss the choice of comparison measure of proximity matrices.

We simply use the expression presented above. Let specify again that our goal is not

to compare proximity matrices or the preorders induced but to propose a different

approach which is the topological equivalence that we compare to the preordering

equivalence and we will put in perspective this two approaches.

With this proximity measure, we can compare proximity measures from their as-

sociated proximity matrices. The results of the comparison pair of proximity mea-

sures are given in Appendix Tables 3 and 4.

4 Topological equivalence

The topological equivalence is in fact based on the concept of topological graph that

use the neighborhood graph. The basic idea is quite simple: two proximity measures

are equivalent if the topological graph induced on the set of objects is the same. For

evaluating the resemblance between proximity measures, we compare neighborhood

graphs and quantify their similarity. At first, we will define precisely what is a topo-

logical graph and how to build it. Then, we propose a proximity measure between

topological graphs used to compare proximity measures in the section below.

4.1 Topological graph

Let consider a set of objects E = {x,y,z, . . .} of n = |E| objects in R p, such that

x,y,z, . . . a set of points of Rp. By using a proximity measure u, we can define a
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neighborhood relationship Vu to be a binary relation on E × E. There are many

possibilities to build a neighborhood binary relation.

For example, we can built the Minimal Spanning Tree (MST) on (E ×E) and

define, for two objects x and y, the property of the neighborhood according to min-

imal spanning tree [Kim and Lee, 2003], if they are directly connected by an edge.

In this case, Vu(x,y) = 1 otherwise Vu(x,y) = 0. So, Vu forms the adjacency matrix

associated to the MST graph, consisting of 0 and 1. Figure 1 shows a result in R 2.
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Fig. 1 MST example for a set of points in R2 and the associated adjacency matrix.

We can use many definitions to build the binary neighborhood, for example, the

Graph Neighbors Relative (GNR), [Toussaint, 1980], [Preparata and Shamos, 1985],

where all pairs of neighbor points (x,y) satisfy the following property:

if u(x,y)≤ max(u(x,z),u(y,z)) ; ∀z �= x, �= y

then, Vu(x,y) = 1 otherwise Vu(x,y) = 0.

Which geometrically means that the hyper-lunula (intersection of the two hyper-

spheres centered on the two points) is empty. Figure 2 shows a result in R 2. In this

case, u is the Euclidean distance: uE(x,y) =
√

(∑
p
i=1(xi − yi)2).
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Fig. 2 RNG example for a set of points in R2 and the associated adjacency matrix.

Similarly, we can use the Gabriel Graph (GG), [Park et al., 2006], where all pairs

of points satisfy: u(x,y)≤ min(
√

u2(x,z)+ u2(y,z)) ; ∀z �= x, �= y.
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Geometrically, the diameter of the hypersphere u(x,y) is empty. Figure 3 shows

an example in R2.
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Fig. 3 GG example for a set of points in R2 and the associated adjacency matrix.

For a given neighborhood property (MST, GNR, GG), each measure u generates

a topological structure on the objects E which is totaly described by its adjacency

matrix Vu.

4.2 Comparing adjacency matrices

To fix ideas, let consider two proximity measures u i and u j taken among those we

identified in Table 1 or in Table 2. Dui
(E ×E) and Du j

(E ×E) are the associated

table of distances.

For a given neighborhood property, each of these two distances generates a topo-

logical structure on the objects E. A topological structure is fully described by its

adjacency matrix. Note Vui
and Vu j

the two adjacency matrices associated with two

topological structures. To measure the degree of similarity between graphs, we only

need to count the number of discordances between the two adjacency matrices. The

matrix is symmetric, we can then calculate this amount by:

D(Vui
,Vu j

) = 2
n(n−1) ∑n

k=1 ∑n
l=k+1 δkl where δkl =

{

0 i f Vui
(k, l) =Vu j

(k, l)

1 otherwise

D is the measure of dissimilarity which varies in the range [0,1]. Value 0 means

that the two adjacency matrices are identical and therefore the topological structure

induced by the two proximity measures is the same. In this case, we talk about

topological equivalence between the two proximity measures. Value 1 means that

the topology has changed completely, i.e., no pair of neighbors in the topological

structure induced by the first proximity measure, only stayed close in the topological

structure induced by the second measure and vice versa. D also interpreted as the

percentage of disagreement between adjacency tables.
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With this dissimilarity measure, we can compare proximity measures from their

associated adjacency matrices. The results of pairwise comparisons of proximity

measures are given in Appendix Tables 3 and 4.

5 Comparison and discussion

To illustrate and compare the two approaches, we consider a relatively simple con-

tinuous and binary datasets, Fisher Iris and Zoo data from the UCI-Repository.

We will show some more general results. We deduce from the Theorem 1 of

preordonnance equivalence, the following property.

Property Let f be a strictly monotonic function of R+ in R+, ui and u j two

proximity measures such as: ui(x,y)→ f (ui(x,y)) = u j(x,y) then,

ui(x,y) ≤ max(ui(x,z) , ui(y,z))⇔ u j(x,y) ≤ max(u j(x,z) , u j(y,z)).

Proof Suppose: max(ui(x,z) , ui(y,z)) = ui(x,z), by Theorem 1,

ui(x,y) ≤ ui(x,z)⇒ f (ui(x,y))≤ f (ui(x,z)),

again, ui(y,z) ≤ ui(x,z)⇒ f (ui(y,z)) ≤ f (ui(x,z))

⇒ f (ui(x,y))≤ max( f (ui(x,z)), f (ui(y,z))),

whence the result, u j(x,y)≤ max(u j(x,z),u j(y,z)).

The reciprocal implication is true, because f is continuous and strictly monotonic

then its inverse f −1 is continuous in the same direction of variation of f .

In the case where f is strictly monotonic, we can say that if the preorder is pre-

served then the topology is preserved and vice versa. This property leads us to give

the following theorem.

Theorem 2. Equivalence in topology: Let ui and u j two proximity measures, if there

exists a strictly monotonic f such that for every pair of objects (x,y) we have:

ui(x,y) = f (u j(x,y)) then, ui and u j induce identical topological graphs and there-

fore they are equivalent: ui ≡ u j.

The inverse is also true, ie two proximity measures which dependent on each

other induce the same topology and are therefore equivalent.

Proposition In the context of topological structures induced by the graph of

neighbors relative, if two proximity measures u i and u j are equivalent in preordon-

nance, so they are necessarily topological equivalence.
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a) Topological structure: Relative Neighbors Graph (RNG)

b) Preordonnance

Fig. 4 Continuous data - Comparison of hierarchical trees

Proof. If ui ≡ u j (preordonnance equivalence) then,

ui(x,y)≤ ui(z, t)⇒ u j(x,y)≤ u j(z, t) ∀x,y,z, t ∈ Rp.

We have, especially for t = x = y and z �= t,
{

ui(x,y)≤ ui(z,x)⇒ u j(x,y)≤ u j(z,x)
ui(x,y)≤ ui(z,y)⇒ u j(x,y)≤ u j(z,y)

we deduce, ui(x,y) ≤ max(ui(z,x),ui(z,y)) ⇒ u j(x,y)≤ max(u j(z,x),u j(z,y))

using symmetry property P1,

ui(x,y)≤ max(ui(x,z),ui(y,z)) ⇒ u j(x,y)≤ max(u j(x,z),u j(y,z))

hence, ui ≡ u j (topological equivalence).

Remark Influence of structure: u i ≡ u j (preordonnance equivalence) ⇒ u i ≡ u j

(GNR topological equivalence) ⇐ u i ≡ u j (GG topological equivalence).
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a) Topological structure: Graph Neighbors Relative (GNR)

b) Preordonnance

Fig. 5 Binary data - Comparison of Hierarchical trees

The results of pairwise comparisons, Appendix Table 3, are somewhat different,

some are closer than others. We can note that three pairs of proximity measures

(uE ,uEw), (uSC,uJD) and (uχ2 ,uJD) which are in perfect preordonnance equivalence

(D(ui,u j) = 0) are in perfect topology equivalence (D(Vui
,Vu j) = 0). But the in-

verse is not true, for example, the pair (uSC,uχ2) which is in perfect topology equiv-

alence is not in perfect preordonnance equivalence.

We can also see, Appendix Table 4, that the results of pairwise comparisons

for binary data are not very different. All pairs which are in perfect preordonnance

equivalence are in perfect topology equivalence. The pair (u 14 Sokal-Sneath , u16

Baroni-Urbani) which is in perfect topology equivalence is not in perfect preordon-

nance equivalence.
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To view these proximity measures, we propose, for example, to apply an algo-

rithm to construct a hierarchy according to Ward’s criterion [Ward Jr, 1963]. Prox-

imity measures are grouped according to their degree of resemblance and they also

compare their associated adjacency matrices. This yields the dendrograms below,

Figures 4 and 5.

We found also that the classification results differ depending on comparing the

proximity measures using preordonnance equivalence or topological equivalence.

6 Conclusion

The choice of a proximity measure is subjective because it depends often of habits

or criteria such as the subsequent interpretation of results. This work proposes a

new approach of equivalence between proximity measures. This approach, called

topological, is based on the concept of neighborhood graph induced by the prox-

imity measure. For the practical matter, in this paper the measures that we have

compared, are built on continuous and binary data.

In our next work, we will apply a statistical test on the adjacency matrices as-

sociated to proximity measures because it helps to give a statistical significance of

the degree of equivalence between two proximity measures and validates the topo-

logical equivalence, which means here, if they really induce the same neighborhood

structure on the objects. In addition, we want to extend this work to other topo-

logical structures in order to analyze the influence of the choice of neighborhood

structure on the topological equivalence between these proximity measures. Also,

we want to analyze the influence of data and the choice of clustering methods on the

regroupment of these proximity measures.
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Appendix

S = 1−D u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13

u1 : uE 1 .776 .973 .988 .967 .869 .890 .942 1 .947 .945 .926 .863

u2 : uMah .876 1 .773 .774 .752 .701 .707 .737 .776 .739 .738 .742 .703

u3 : uMan .964 .840 1 .964 .940 .855 .882 .930 .973 .933 .932 .924 .848

u4 : uMinγ .964 .876 .947 1 .967 .871 .892 .946 .988 .950 .949 .925 .866

u5 : uTch .947 .858 .929 .964 1 .865 .887 .940 .957 .942 .942 .914 .860

u6 : uCos .858 .858 .840 .840 .858 1 .893 .898 .869 .899 .899 .830 .957

u7 : uCan .911 .840 .929 .893 .911 .822 1 .943 .890 .940 .942 .874 .868

u8 : uSC .947 .840 .947 .929 .947 .858 .947 1 .942 .957 1 .913 .884

u9 : uEw 1 .876 .964 .964 .947 .858 .911 .947 1 .947 .945 .926 .863

u10 : uχ2 .947 .840 .947 .929 .947 .858 .947 1 .947 1 1 .912 .885

u11 : uJD .947 .840 .947 .929 .947 .858 .947 1 .947 1 1 .914 .884

u12 : uHIM .884 .813 .884 .867 .902 .884 .884 .920 .884 .920 .920 1 .825

u13 : uρ .867 .849 .831 .867 .867 .973 .796 .849 .867 .849 .849 .876 1

Table 3 Similarities tables: S(Vui
,Vu j

) = 1−D(Vui
,Vu j

) and S(ui,u j) = 1−D(ui,u j)
Continuous data - Topology (row) & Preordonnance (column).

The elements located above the main diagonal correspond to the dissimilarities in preordonnance

and those below correspond to the dissimilarities in topology.
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Table 4 Similarities tables: S(ui,u j) = 1−D(ui,u j) and S(Vui
,Vu j

) = 1−D(Vui
,Vu j

)
Binary data - Preordonnance (row) & Topology (column).


