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Abstract The results of any operation of clustering or classification of objects
strongly depend on the proximity measure chosen. The user has to select one mea-
sure among many existing ones. Yet, according to the notion of topological equiva-
lence chosen, some measures are more or less equivalent. In this paper, we propose a
new approach to compare and classify proximity measures in a topological structure
and in a context of discrimination. The concept of topological equivalence uses the
basic notion of local neighborhood. We define the topological equivalence between
two proximity measures, in the context of discrimination, through the topological
structure induced by each measure. We propose a criterion for choosing the “’best”
measure, adapted to the data considered, among some of the most used proximity
measures for quantitative or qualitative data. The principle of the proposed approach
is illustrated using two real datasets with conventional proximity measures of liter-
ature for quantitative and qualitative variables. Afterward, we conduct experiments
to evaluate the performance of this discriminant topological approach and to test
if the proximity measure selected as the best” discriminant changes in terms of
the size or the dimensions of the used data. The “best” discriminating proximity
measure will be verified a posteriori using a supervised learning method of type
Support Vector Machine, discriminant analysis or Logistic regression applied in a
topological context.
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1 Introduction

The comparison of objects, situations or ideas are essential tasks to assess a situa-
tion, to rank preferences or to structure a set of tangible or abstract elements, etc.
In a word, to understand and act, we have to compare. These comparisons that the
brain naturally performs, however, must be clarified if we want them to be done by
a machine. For this purpose, we use proximity measures. A proximity measure is
a function which measures the similarity or dissimilarity between two objects of a
set. These proximity measures have mathematical properties and specific axioms.
But are such measures equivalent? Can they be used in practice in a undifferentiated
way? Do they produce the same learning database that will serve as input to the
estimation of the membership class of a new object? If we know that the answer is
negative, then, how to decide which one to use? Of course, the context of the study
and the type of the data considered can help to select few proximity measures but
which one to choose from this selection?

We find this problematic in the context of a supervised classification or a dis-
crimination. The assignment or the classification of an anonymous object to a class
partly depends on the used learning database. According to the selected proximity
measure, this database changes and therefore the result of the classification changes
too. We are interested here in the degree of topological equivalence of these proxim-
ity measures in discrimination. Several studies on topological equivalence of prox-
imity measures have been proposed [Batagelj and Bren, 1992, Rifdqi et al., 2003,
Batagelj and Bren, 1995, Lesot et al., 2009, Zighed et al., 2012] but neither of these
propositions has an objective of discrimination.

Therefore, this article focuses on how to construct the adjacency matrix induced
by a proximity measure, taking into account the membership classes of the ob-
jects, by juxtaposing the Within-groups and Between-groups adjacency matrices
[Abdesselam, 2014].

A criterion for selecting the “best” proximity measure is proposed. We check a
posteriori whether the chosen measure is a good discriminant one using the Multi-
class SVM method (MSVM).

This article is organized as follows. In Section 2, after recalling the basic no-
tions of structure, graph and topological equivalence, we present how to build the
adjacency matrix for discrimination, the choice of a measure of the degree of topo-
logical equivalence between two proximity measures and the selection criterion of
the “best” discriminant measure. Two illustrative examples, one with continuous
data and the other with binary data are discussed in Section 3 as well as other exper-
iments to evaluate the effects of the dimensions and the size of data on the choice
of the “best” discriminant proximity measure. A general conclusion and some per-
spectives of this work are given in Section 4.

Table 1 shows some classic proximity measures used for continuous data, defined
on R?. For binary data, we give in Table 2 the definition of 14 proximity measures
defined on {0, 1}7. All the datasets used are from the UCI Machine Learning Repos-
itory [UCI, 2013].
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Table 1 Some proximity measures for continuous data.

Mesure Distance - Dissimilarity
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Where, p is the dimension of space, x = (x;)—1,..., and y = (y;)j=1...., two points in R”, (&j)j1..., > 0, Y ! the
inverse of the variance and covariance matrix, GJZ the variance, ¥ > 0.
Table 2 Some proximity measures for binary data
Measure Similarity Dissimilarity
Jaccard Siac = rpTe Ujae = 1 — Syac
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Let x = (xi)i=1,..p and y = (¥i)i=1,..p be lwo points in {0,1}” representing respectively the attributes of two
any objects x and y. Where, a = [X NY| =Y x;y; is the number of attributes common to both points x and y,
b=I|X-Y| =Y’ x(1—y) is the number of attributes present in x but notiny, c =Y —X| =Y (1 —x)y; is the
number of attributes present in y but not in x and d = [XNY| =Y (1 —x;)(1 —y;) is the number of attributes in

neither x or y.
X ={j/xj=1} and Y = {j/y; = 1} are the sets of attributes present in data point x and y respectively, and |.| the
cardinality of a set. The cardinals a, b, c and d are linked by the relation a+b+c+d = p.

2 Topological Equivalence

The topological equivalence is based on the concept of topological graph also re-
ferred to as neighborhood graph. The basic idea is actually quite simple: two prox-
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imity measures are equivalent if the corresponding topological graphs induced on
the set of objects remain identical. Measuring the similarity between proximity mea-
sures consists in comparing the neighborhood graphs and measure their similarity.
We will first define more precisely what a topological graph is and how to build
it. Then, we propose a measure of proximity between topological graphs that will
subsequently be used to compare the proximity measures.

2.1 Topological Graph

Consider a set E = {x,y,2,...} of n = |E| objects in R?. We can, by means of a
proximity measure u, define a neighborhood relationship V,, to be a binary relation-
ship on E x E. There are many possibilities for building this neighborhood binary
relationship.

Thus, for a given proximity measure u, we can build a neighborhood graph on a
set of individuals-objects, where the vertices are the individuals and the edges are
defined by a property of neighborhood relationship.

Many definitions are possible to build this Binary neighborhood relationship.
One can choose, the Minimal Spanning Tree (MST) [Kim and Lee, 2003], the
Gabriel Graph (GG) [Park et al., 2006] or, which is the case here, the Relative
Neighborhood Graph (RNG) [Toussaint, 1980, Jaromczyk and Toussaint, 1992],
where, all pairs of neighbour points (x,y) satisfy the following property:

Vu(x,y) = Lif u(x,y) < max(u(x,z),u(yz)); Vx € E;Vy € E;Vz € E— {x,y}
Vu(x,y) =0 otherwise (1)

That is, if the pairs of points verify or not the ultra-triangular inequality (1), ultra-
metric condition. Which means geometrically that the hyper-lunula (the intersection
of the two hyperspheres centered on two points) is empty.

Fig. 1 Topological graph RNG
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Figure 1 shows, an example of a topological graph RNG perfectly defined in R?
by the associated adjacency matrix V,,, containing Os and 1.

In this case, u(x,y) = ug(x,y) = y/ (L2, (x; — y;)?) is the Euclidean distance.

For a given neighborhood property (MST, GG or RNG), each measure u gener-
ates a topological structure on the objects in E which are totally described by the
adjacency matrix V.

2.2 Comparison of proximity measures

Let p be the number of explanatory variables (predictors) {x/;j =1,..,p} and y a
target qualitative variable to explain, partition of n = ):Z:l ny individuals-objects
into ¢ modalities-subgroups {Gy;k =1,..,¢}.

For any given proximity measure u;, we construct, according to Property (1),
the overall binary adjacency matrix V,, stands as a juxtaposition of g symmetrical
Within-groups adjacency matrices {Vk, =1,.,q} and g(g — 1) Between-groups
adjacency matrices {Vf,k #Lkl=1,.,q}:

{V" (x,y) = Lif wi(x,y) < max(u;(x,2),u;(%,2)) ; ¥x,5,2 € Gy, z#xand z#y

Vi (x,y) = 0 otherwise

HES
Vi (x,y) = 1if ui(x,y) < max(ui(x,2),ui(y,2)): Vx € G, Vy € Gy, V2 € G, 2 # y
Vkl( ,y) = 0 otherwise

1 k
Vgi ...Vgi Vzi

Note that the partitioned adjacency matrix V,,, thus constructed, is not symmetri-
cal. Indeed, for two objects x € Gy and y € G, the adjacency binary values Vukl_l (x,y)

and V,¥(v,x) can be different.

e The first objective is to regroup the different proximity measures considered,
according to their topological similarity in order to visualize better their resem-
blance in a context of discrimination.

To measure the topological equivalence in discrimination between two proxim-
ity measures u; and u;, we propose to test if the associated adjacency matrices V,,,
and V,; are different or not. The degree of topological equivalence between two
proximity measures is measured by the quantity:

Lif Vi (k,1) = Vi, (k1)

S(Vunvuj) = n? with &y = 0 otherwise.
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e The second objective is to define a criterion to assist in the selection of the
“best” proximity measure, among the considered ones, that discriminates at the best
the q groups.

We note, V. = diag(1g,;..-,1G,,---,1c,) the adjacency block diagonal refer-
ence matrix, ’perfect discrimination of the g groups” according to an unknown
proximity measure denoted ux. Where 1,, is the vector of order n; whose all com-
ponents are equal to 1 and 1, = 1,,, ! 1y, , is the symmetric matrix of order n; whose
elements are all equal to 1.

16,
Ve=| 0 0 Ig

0 0 0

0 0 0 0lg,

Thus, we can establish the degree of topological equivalence of discrimination
S(Vi;, Vi) between each considered proximity measures u; and the reference mea-
sure u*.

Finally, in order to evaluate otherwise the choice of the ”best” discriminant prox-
imity measure proposed by this approach, we a posteriori applied a Multiclass SVM
method (MSVM) on the adjacency matrix associated to each considered proximity
measure including the reference one u*.

3 Illustration examples

To illustrate our approach, we consider here two sets of well-known and relatively
simple data, the Iris [Fisher, 1936, Anderson, 1935] and Animals Zoo. These two
sets of respectively continuous and binary explanatory variables are references for
discriminant analysis and clustering. The complete data and the dictionary of vari-
ables are especially in the UCI Machine Learning Repository [UCI, 2013].

Let X, ,) be a set of data with n objects and p explanatory variables, and Y|, be
a qualitative variable to be explained with ¢ modalities-classes.

Table 3 Data sets

Number Name Explanatory variables Variable to explain
Type & X(uxp) Yg)
1 Iris Continuous 150 x 4 3

Zoo Binary 74 x 15 3
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3.1 Comparison and classification of proximity measures

The main results of the proposed approach in the case of continuous and binary
data, are presented in the following tables and graphs. They allow to visualize the
measures that are close to each other in a context of discrimination.

Table 4 Continuous data - Similarities S(Vy;, Vi;) and S(Vy;, Vir)

N Ug UMah UMan Urch UCos UNE UMin,_s  UCor
U 1

UMah 0.953 1

UMan 0.977 0.947 1

Uren 0968 0934 0949 1
UCos 0955 0946 0949 0939 1

Ung 0968 0956 0969 0945 0950 1

Umin,s 0992 0951 0971 0975 0953 0965 1

UCor 0949 0943 0944 0930 0966 0946 0948 1

u* 0.675 0.673 0.678 0.681 0.675 0.674  0.675 0.673

For the continuous data set, Table 4 summarizes the similarities in pairs between
the eight proximity measures and shows that, independently of the other measures,
the two by two similarity value between the reference measure and each of the
proximity measures is most important, S(V,,.. ., V,») = 68.10%, with the Tchebychev
measure Urep.

Tch?

A Principal Component Analysis (PCA) followed by Ascendant Hierarchical
Classification (AHC) were performed from the similarity matrix between the eight
proximity measures considered, to partition them into homogeneous groups and to
view their similarities.

Fig. 2 Hierarchical tree of the continuous proximity measures

‘ 5
Cosine Dissimilarity
4 y
3 Mahalanobis

Tchebytchev
2 Normalized Euclidean

‘ Manhattan

1 Minkowski

Euclidean

The AHC algorithm according to the Ward criterion, [Ward Jr, 1963], provides
the dendrogram of Figure 2.
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The similarity vector S(Vj,,V,+) of the reference measure with the considered
proximity measures is positioned as illustrative element in the analysis.

Table 5 Continuous measures - Assignment of the reference measure

Number Class 1 Class 2 Class 3 Class 4 Class 5
Frequency 3 1 1 1 2

Active Measures UE, UMin, UMan UNE UTch UMah UCos, UCor
Supplementary measure u*

In view of the results presented in Table 5, for the selected partition into 5 classes
of proximity measures, the reference measure u*, projected as additional element,
would be closer to the measures of the third class, i.e., the Tchebychev proximity
measure uy., which would be, for these data, the ’best” proximity measure among
the eight measures considered.

Table 6 Binary data - Similarities S(V,,;,V,;) and S(Vy;, Vi)

N Wiac UDic UKul UOch USS1 USS2 USS4 USSS URR URT UHama Uyy UQY UHamm
Ujac 1

upic 1 1

ugy 1 1 1

UOch 1 1 1 1

ussy 987 987 .987 .987 1

usp 11 1 1 987 1

usss 997 997 997 .997 .986 .997 1

usss 997 997 997 997 986 997 1 1

ugr 826 826 .826 .826 .814 .826 .824 .824 1

urr 987 987 987 987 1  .987 .986 .986 .814 1

Urama 987 987 987 987 1  .987 986 986 814 1 1

uyy 938 938 938 .938 .926 .938 .940 .940 .884 926 .926 1|

ugy 938 938 938 938 .926 .938 .940 940 .884 926 926 1 1
Urtamm 987 987 987 987 1 987 986 986 814 1 1 926 .926 1

u* 695 695 695 .695 .683 .695 .694 .694 .716 .683 .683 .754 .754 .683

For binary data, the results of pairwise comparisons presented in Table 6, are
somewhat different, some are closer than others. We note that pairs of prox-
imity measures of these sub-sets: (Ujac,UDicy Ukuls UOch, Uss2)s (USS1sURT s UHama)s
(URT , UHama, UHamm) and (Ugy , Uyy , Uramm) are in perfect topological equivalence of
discrimination S(V,,;,Vu j) = 1. The measures ugy and uyy of Yule, independently
of the other measures, are those which have a greatest similarity with the refer-
ence measure S (Vqu,Vu*) = S(Vuyy, Vur) = 75.40%, followed by the measure ugg
of Russel & Rao S(V e, Vi) = 71.60%.
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Fig. 3 Hierarchical tree of the binary proximity measures

} Q-Yule
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Hamming
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Table 7 Binary measures - Assignment of the reference measure

Number Class 1 Class 2 Class 3 Class 4
Frequency 7 4 2 1
Active Ujacs UDC»> UKul> UDKO ~ USS1, URT Uyy, ugy URR
Measures Uss2, Ussd, Usss UHamas UHamm

Supplementary measure u*

The AHC algorithm according to the Ward criterion, provides the dendrogram of
Figure 3. In view of the results presented in Table 7, for the selected partition into
4 classes of proximity measures, the reference measure u*, projected as additional
element, would be closer to the measures of the fourth class, i.e., the Russel &
Rao proximity measure ugg would be, for these data, the “best” proximity measure
among the 14 considered.

3.2 Discriminant measures according to the MSVM method

This part consists in validating a posteriori the results of choosing the best mea-
sure in view of the reference matrix using MSVM. We use the M SV M w model,
[Lee et al., 2004], considered as the most theoretically based of MSVM models as
it is the only one that implements asymptotically the Bayes decision rule.

Working with the MSV My model involves the choice of optimal values of its
parameters, namely, C, representing the weight of learning errors, and the parame-
ter(s) of the kernel function if we decide to change the data space.

For our two datasets, we choose to work in the original data space and therefore
to use a linear kernel. The only parameter to be optimized is C. To do this, we will
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test several values and choose the one that minimizes the testing error calculated
by cross-validation. For both examples, we test 10 values of the parameter C for all
databases. After simulations, the chosen value is C = 1.

Table 8 Results of the MSVM model - Continuous Iris data

Name Measure Training error(%)  Confusion matrix ~ Rank
500 0
Euclidean Uug 0 0 50 0 1
0 0 50
500 0
Mabhalanobis UMah 0.66 049 1 3
0 0 50
500 0
Manhattan UMan 0.66 049 1 3
0 0 50
500 0
Tchebychev UTch 0 050 0 1
0 0 50
500 0
Cosine dissimilarity UCos 0.66 049 1 3
0 0 50
500 0
Normalized Euclidean  ung 1.33 0 50 0 6
0 2 48
500 0
Minkowski uMi"7:5 1.33 ( 049 1 ) 6
0 149
500 0
Pearson correlation UCor 1.33 049 1 6
0 149
500 0
Reference measure u* 0 050 0
0 0 50

The main results of the MSV M model, applied to each of the adjacency ma-
trices induced by proximity measures are presented in Tables 8 and 9.

For continuous data, Table 8 shows that the best training error rate is that given
by Tchebychev ur.;, and Euclidean ur measures which is also equal to that given
by the reference adjacency matrix V,. For binary data, Table 9, the training error
doesn’t allow to choose one of the measures as it gives to same value for all datasets,
so, we move to calculate the testing error by cross validation which indicates that
the Russel & Rao proximity measure ugg is the “best” one and the closest to the
reference measure u*.

Thus, the application of the MSVM model reveals that Tchebychev and Eu-
clidean proximity measures are the most appropriate to differentiate the three
species (Setosa, Virginica and Versicolor) of iris flowers, and that Russel & Rao
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Table 9 Results of the MSVM model - Binary Zoo data

Name Measure Training error(%) Test error(%) Confusion matrix Rank
392 0
Jaccard Ujac 0 4.05 0200 4
1 012
392 0
Dice UDic 0 4.05 020 0 4
1 012
392 0
Kulczynski UKyl 0 4.05 020 0 4
1 0 12
392 0
Ochiai UOch 0 4.05 0200 4
1 0 12
401 0
Sokal and Sneath 1 uss1 0 541 2180 9
1 0 12
392 0
Sokal and Sneath 2 ugs 0 4.05 0200 4
1 0 12
38330
Sokal and Sneath 4 uggy 0 6.76 1190 13
1 0 12
38330
Sokal and Sneath 5 Uusss 0 6.76 1190 13
1 0 12
41 0 O
Russel and Rao URR 0 1.35 020 0 1
0 0 13
401 0
Rogers and Tanimoto ugr 0 541 2 18 0 9
1 012
401 0
Hamann UHama 0 5.41 218 0 9
1 012
392 0
Y-Yule uyy 0 2.70 0200 2
0 0 13
392 0
Q-Yule ugy 0 2.70 0200 2
0 0 13
401 0
Hamming distance UHamm 0 5.41 218 0 9
(1 0 12)
41 0 O
Reference measure u* 0 0 020 0
0 0 13
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proximity measure is the one to choose to better separate the three species of an-
imals. Those results confirm the ones obtained previously, namely the choice of
Tchebychev measure uy., among the eight continuous measures considered and
Russel & Rao ugr among the fourteen binary measures considered as the nearest
ones to the reference measure u* and therefore the most discriminant.

3.3 Experimentations

We conduct experiments on more datasets to evaluate the effect of the data, their size
and/or their dimensions on the results of the classification of proximity measures
for the purpose of discrimination. For instance, are the proximity measures grouped
differently depending on the dataset used? Depending on the sample size and/or the
number of explanatory variables considered in the same set of data?

To answer these questions, we have therefore applied the proposed approach on
the different datasets presented in Table 10, all from the repository [UCI, 2013]. The
objective is to compare the results of the classification of proximity measures and
the choice of the ’best” discriminant measure proposed for each of these datasets.

To analyze the effect of the change of dimensions, we consider the continuous
data set "Waveform Database Generator” to generate 3 samples (number 4) of size
n = 2000 objects and p dimension respectively equal to 40, 20 and 10 explanatory
variables. Similarly, to evaluate the impact of the change in sample size, we also
generated 3 other samples (number 5) of size n, respectively, equal to 3000, 1500
and 500 objects with the same dimension p equal to 30 explanatory variables.

Table 10 Continuous data sets

Number Name Explanatory variables Variable to explain
Xnxp) )
1 Iris 150 x 4 3
2 Wine 178 x 13 3
3 Wine Quality 3000 x 11 2
44 Waveform Database Generator 2000 x 40 3
4, ‘Waveform Database Generator 2000 x 20 3
45 Waveform Database Generator 2000 x 10 3
51 Waveform Database Generator 3000 x 30 3
5, Waveform Database Generator 1500 x 30 3
53 Waveform Database Generator 500 x 30 3

The main results of these experiments, namely the topological equivalence of
proximity measures and the assignment of the reference measure u* to the nearest
class are presented in Table 11.
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For each of these experiments, we selected a partition into five classes of proxim-
ity measures to compare and well distinguish the measures of the membership class
of the reference measure, that is to say the most discriminating ones.

Table 11 Clusters and assignment of the reference measure u*

Number Class 1 Class 2 Class 3 Class 4 Class 5

1 UCos» UCor UE s UMin, UMan UMa UNE Urch, 0*
2 UCos> UCor UE, UMin, UTch Upggh, O UNE UMan

3 UCos, UCor UE, UMin, UMan UMah ung ,u* UTch

4 UCos» UCor» UE UMans UNE UMah UMin ureh, u*
42 UCoss UCors UE, UNE UMan UMah UMin Urch, u”
45 UCoss UCor UE s UMan> UNE UMah UMin urch, u*
51 UCos> UCor» UE UMan> UNE Uptah Upin urep, u*
52 UCoss UCors UE UMan> UNE Upah UMin urep, u*
53 UCos, UCor> UE UMan, UNE UMah UMin Urch, U*

Clusters of proximity measures obtained for the three data sets number 4 are
virtually identical, so theres not really dimension effect.

As to clusters of proximity measures of the three data sets number 5, they are
almost identical, so there is no sample size effect.

Note that all the samples number 4 and 5, are generated from the same data set
”Waveform Generator Database”, the ideal reference measure u* for discrimination
is close to the same proximity measure, i.e. here, the Tchebychev measure u7y,. This
result shows that there is no size or dimensionality effect on the result of choosing
the ”best” discriminant measure.

With regard to all experiments, we can see a slight change in the clusters of
the proximity measures. However, we can also note equivalences between certain
measures such as ucys, Ucor,ug and ung,uprqn . Others are isolated such as up.y,,
Uptan and upgip .

4 Conclusion and perspectives

The choice of a proximity measure is very subjective, it is often based on habits
or on criteria such as the interpretation of the a posteriori results. This work pro-
poses a new approach for equivalence between proximity measures in the context
of discrimination.

This topological approach is based on the concept of neighborhood graph in-
duced by the proximity measure. From a practical point of view, in this paper, we
compared several measures built either on continuous or binary data. But this work
may well be extended to mixed data (quantitative and qualitative) by choosing the
right topological structure and the adapted adjacency matrix.
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We plan to extend this work to other topological structures and to use a com-
parison criteria, other than classification techniques, in order to validate the degree
of equivalence between two proximity measures. For example, evaluate the degree
of topological equivalence in discrimination between two proximity measures using
the non-parametric Test Kappa coefficient of concordance, calculated from the asso-
ciated adjacency matrices [Abdesselam and Zighed, 2011]. This will allow to give
a statistical significance of the degree of agreement between two similarity matri-
ces and to validate or not the topological equivalence in discrimination, i.e, whether
or not they induce the same neighborhood structure on the groups of objects to be
separated.

The experiments conducted on different data sets have shown that there is no
effect of samples size and no real effect of dimension on both clusters of proximity
measures and the result of the choice of the best discriminant measure.
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