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ABSTRACT
Topological multiple correspondence analysis (TMCA) studies a
group of categorical variables defined on the same set of individ-
uals. It is a topological method of data analysis that consists of
exploring, analyzing, and representing the associations between
several qualitative variables in the context of multiple correspon-
dence analysis (MCA). It compares and classifies proximity mea-
sures to select the best one according to the data under con-
sideration, then analyzes, interprets, and visualizes with graphic
representations, the possible associations between several cate-
gorical variables relating to the known problem of MCA. Based
on the notion of neighborhood graphs, some of these proxim-
ity measures are more-or-less equivalent. A topological equiva-
lence index between two measures is defined and statistically
tested according to the degree of description of the associations
between the modalities of these qualitative variables.
We compare proximity measures and propose a topological cri-
terion for choosing the best association measure, adapted to the
data considered, from among some of the most widely used prox-
imity measures for categorical data. The principle of the proposed
approach is illustrated using a real dataset with conventional
proximity measures for binary variables from the literature. The
first step is to find the proximity measure that can best be adapted
to the data; the second step is to use this measure to perform the
TMCA.
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1. Introduction

Similarity measures play an important role in many areas of data analysis. The
results of any operation involving structuring, clustering or classifying objects
are strongly dependent on the proximity measure chosen. The user has to select
one measure among many existing ones. Yet, according to the notion of topo-
logical equivalence chosen, some measures are more-or-less equivalent. The
concept of topological equivalence uses the basic notion of local neighborhood.
We define the topological equivalence between two proximity measures, in
the context of association between several categorical variables, through the
topological structure induced by each measure.
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Multiple correspondence analysis (MCA) is an important methodology
among factorial techniques due to the extent of its field of application (Benzécri
1976; Lebart, Morineau, and Warwick 1984). It allows us, among others things,
to describe large binary tables, such as socio-economic surveys, and usually
answers questions on modalities.

This method is a generalization of correspondence analysis (CA); it concerns
the relations between or within a set of p (p > 2) qualitative variables simulta-
neously observed in n individuals. Generally the variables are homogeneous in
the sense that they revolve around a particular theme.

To understand and act on situations that are represented by a set of objects,
very often we are required to compare them. Humans perform this comparison
subconsciously, using the brain. In the context of artificial intelligence, however,
we should be able to describe how the machine might perform this comparison.
In this context, one of the basic elements that must be specified is the proximity
measure between objects.

Certainly, the application context, prior knowledge, data type and many other
factors can help in identifying the appropriate measure. For instance, if the
objects to be compared are described by Boolean vectors, we can restrict our
comparisons to a class of measures specifically devoted to this type of data.
However, the number of candidate measures may still remain quite large. Can
we consider that all those measures remaining are equivalent and just pick one
of them at random? Or are there some that are equivalent and, if so, to what
extent? This information might interest a user when seeking a specific measure.
For instance, in information retrieval, choosing a given proximity measure is an
important issue. We effectively know that the result of a query depends on the
measure used. For this reason, users may wonder which one is more useful. Very
often, users try many of them, randomly or sequentially, seeking a “suitable”
measure. If we could provide a framework that allows the user to compare
proximity measures to identify those that are similar, they would no longer need
to try out all measures.

The present study proposes a new framework for comparing proximity
measures to choose the best one in the context of association between a set of
qualitative variables. The aim is to establish a TMCA.

We deliberately ignore the issue of the appropriateness of the proximity
measure, as it is still an open and challenging question currently being studied.
The comparison of proximity measures can be analyzed from various angles.

The comparison of objects, situations or ideas is an essential task to assess a
situation, to rank preferences, to structure a set of tangible or abstract elements,
and so on. In a word, to understand and act, we have to compare. These
comparisons that the brain naturally performs, however, must be clarified if
we want them to be done by a machine. For this purpose, we use proximity
measures. A proximity measure is a function which measures the similarity or
dissimilarity between two objects within a set. These proximity measures have
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mathematical properties and specific axioms. But are such measures equivalent?
Can they be used in practice in an undifferentiated way? Do they produce the
same learning database that will serve to find the membership class of a new
object? If we know that the answer is negative, then how do we decide which
one to use? Of course, the context of the study and the type of data being
considered can help in selecting a few possible proximity measures, but which
one should we choose from this selection as the best measure for summarizing
the association?

We find this problematic also in the context of TMCA. The eventual links or
associations between all the qualitative variables partly depends on the learning
database being used. The results of MCA can change according to the selected
proximity measure.

Several studies have been proposed on the topological equivalence of prox-
imity measures (Batagelj and Bren 1992; Rifqi, Detyniecki, and Bouchon-
Meunier 2003; Batagelj and Bren 1995; Lesot, Rifqi, and Benhadda 2009; Zighed,
Abdesselam, and Hadgu 2012), and on the discrimination context (Abdesselam
2018b), but none of these propositions has the objective of identifying an
association between several categorical variables. An approach in the case of
association between two qualitative variables has been proposed in Abdesselam
(2018a).

Therefore, this article focuses on how to construct the best adjacency matrix
induced by a proximity measure, taking into account the association between
all the modalities of the qualitative variables.

This article is organized as follows. In Sec. 2, after recalling the basic notions of
structure, graph and topological equivalence, we present the proposed method,
how to build an adjacency matrix associated with a proximity measure in the
context of association between several qualitative variables, how to compare
and statistically test the degree of topological equivalence between proximity
measures and how to select the best measure to describe multiple associations.
Sec. 3 presents an illustrative example using real data. The conclusion of this
work is given in Sec. 4.

Table A1, shown in Appendix A, summarizes some classic proximity mea-
sures used for binary data (Warrens 2008); we give on {0, 1}n the definition of
22 of them.

We assume that we have at our disposal {xk; k = 1, . . . , p}, a set of p > 2
qualitative variables and partitions of n = ∑p

k=1 nk individuals-objects into
mk modalities-subgroups. The interest lies in whether there is a topological
association between all these variables. Let us denote:

• Xk = X(n,mk) the disjunctive table, data matrix associated to the mk dummy
variables of the qualitative variable xk with n rows-objects and mk columns-
modalities. We check that �

mk
k=1xk

i = 1, ∀i and �n
i=1xk

i = nk .
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• X(n,m) = [ X1|X2| · · · |Xp ] the indicator matrix, juxtaposition of the p binary
tables Xk, with n rows-objects and m = ∑p

k=1 mk columns-modalities. We
check that �

mk
k=1xk

i = p, ∀i and �n
i=1�

mk
k=1xk

i = np.

An alternative coding of such data is as a Burt matrix, a square symmetric
modality-by-modality matrix formed from all two-way contingency tables of
pairs of variables, including on the block diagonal the cross-tabulations of each
variable with itself.

• B(m,m) = tX X is the symmetric Burt matrix of the two-way cross-
tabulations of the p variables.

• W(m,m) = diag[B], is the diagonal marginal frequency matrices.
• U = 1m t1m is the m × m matrix of 1s.
• Im, is the m × m identity matrix where 1m denotes the m indicator vector of

1s and 1n the n indicator vector of 1s.

The dissimilarity matrices associated with proximity measures are computed
from data given by the Burt table B.

The attributes of the modalities of any two points xk and xl in {0, 1}n of the
proximity measures can be easily written and calculated from the following
matrices. Computational complexity is thus considerably reduced.

• A(m,m) = B, the Burt matrix whose element, akl = |xk ∩ xl| = ∑n
i=1 xk

i xl
i is

the number of attributes common to both points xk and xl,
• B(m,m) = tX (1n t1m − X) = tX 1n t1m − tX X

= W 1m t1m − A = W U − A
whose element, bkl = |Xk−Xl| = |Xk∩Xl| = ∑n

i=1 xk
i (1−xl

i) is the number
of attributes present in xk but not in xl,

• C(m,m) = t(1n t1m − X) X = t(1n t1m) X − tX X
= 1m t1n X − tX X = UW − A

whose element, ckl = |Xl −Xk| = |Xl ∩Xk| = ∑n
i=1 xl

i(1−xk
i ) is the number

of attributes present in xl but not in xk.
• D(m,m) = t(1n t1m − X) (1n t1m − X)

= 1m t1n 1n t1m − 1m t1n X − tX 1n t1m + tX X
= n1m t1m − UW − WU + A = nU − UW − WU + A
= nU − (A + B + C)

whose element, dkl = |Xk ∩ Xl| = ∑n
i=1(1 − xk

i )(1 − xl
i) is the number of

attributes in neither xk or xl.

Xk = {i/xk
i = 1} and Xl = {i/xl

i = 1} are the sets of attributes present in data
point-modality xk and xl respectively, and |.| the cardinality of a set.

The attributes are linked by the relation:

∀k = 1, p ; ∀l = 1, p akl + bkl + ckl + dkl = n.
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Together, the four dependent quantities akl, bkl, ckl, and dkl can be used to
construct the 2×2 contingency table, where the information can be summarized
by an index of similarity (affinity, resemblance, association, coexistence). As a
general symbol for a similarity coefficient the capital letter S will be used. A list
of 22 similarity coefficients is given in Table A1 in Appendix A.

2. Topological correspondence

Topological equivalence is based on the concept of the topological graph, also
referred to as a neighborhood graph. The basic idea is actually quite simple:
two proximity measures are equivalent if the corresponding topological graphs
induced on the set of objects remain identical. Measuring the similarity between
proximity measures involves comparing the neighborhood graphs and mea-
suring their similarity. We will first define more precisely what a topological
graph is and how to build it. Then, we propose a measure of proximity between
topological graphs that will subsequently be used to compare the proximity
measures.

Consider a set E = {x11, . . . , x1m1 , . . . , xp1, . . . , xpmp} of m = ∑p
j=1 mj

modalities in {0, 1}n, associated with the p qualitative variables xj with mj
modalities. We can, by means of a proximity measure u, define a neighborhood
relationship Vu to be a binary relationship on E×E. There are many possibilities
for building this neighborhood binary relationship.

Thus, for a given proximity measure u, we can build a neighborhood graph on
a set of objects-modalities, where the vertices are the modalities and the edges
are defined by a property of the neighborhood relationship.

Many definitions are possible to build this binary neighborhood relationship.
One can choose the minimal spanning tree (MST) (Kim and Lee 2003), the
Gabriel graph (GG) (Park, Shin, and Choi 2006) or, as is the case here, the relative
neighborhood graph (RNG) (Toussaint 1980).

For any given proximity measure u, we construct the associated adjacency
binary symmetric matrix Vu of order m = ∑p

j=1 mj, where all pairs of
neighboring modalities (xkr, xls) and where k, l = 1, p ; r = 1, mk and
s = 1, ml satisfy the following RNG definition.
Definition 1. Relative neighborhood graph (RNG)⎧⎨⎩

Vu(xkr, xls) = 1 if u(xkr, xls) ≤ max[u(xkr, xqt), u(xqt, xls)];
∀xkr, xls, xqt ∈ E, xqt �= xkr and xqt �= xls

Vu(xkr, xls) = 0 otherwise.
This means that if two modalities, xkr and xls which verify the RNG property

are connected by an edge, the vertices xkr and xls are neighbors.
Thus, for any given proximity measure u, we can associate an adjacency

matrix Vu, of binary and symmetrical order m. Figure 1 illustrates an example
of RNG in R

2 of a set of n objects-individuals around nine modalities associated
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Figure 1. RNG example with nine groups-modalities and associated adjacency matrix.

with three qualitative variables x1, x2, and x3 with three, four, and two modali-
ties, respectively.

For example, for the second modality of the first variable and the first modal-
ity of the second variable, Vu(x12, x21) = 1, it means that on the geometrical
plane, the hyper-Lunula (intersection between the two hyperspheres centered
on the two modalities x12 and x21) is empty.

For a given neighborhood property (MST, GG, or RNG), each measure u
generates a topological structure on the objects in E which are totally described
by the adjacency binary matrix Vu. In this article, we chose to use the relative
neighbors graph (GNR).

2.1. Comparison and selection of proximity measures

First we compare different proximity measures according to their topological
similarity to regroup them and to better visualize their resemblances.

To measure the topological equivalence between two proximity measures, ui
and uj, we propose to test if the associated adjacency matrices, Vui and Vuj , are
different or not. The degree of topological equivalence between two proximity
measures is measured by the following definition of concordance.
Definition 2. Topological equivalence index between two adjacency matrices

S(Vui , Vuj) = 1
m2

p∑
k=1

mk∑
r=1

p∑
l=1

ml∑
s=1

δkr ls(xkr, xls)

with δkr ls(xkr, xls) =
{

1 if Vui(xkr, xls) = Vuj(xkr, xls)
0 otherwise.

Then, in our case, we want to compare these different proximity measures
according to their topological equivalence in a context of association. So we
define a criterion for measuring the spacing from the independence or no
association position.
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A contingency table is one of the most common ways to summarize categor-
ical data. Generally, interest lies in whether there is an association between the
row variable and the column variable that produce the table; sometimes there
is further interest in describing the strength of that association. The data can
arise from several different sampling frameworks, and the interpretation of the
hypothesis of no association depends on the framework. The question of interest
is whether there is an association between the two variables.

We construct the adjacency matrix denoted by Vu∗ , which corresponds best to
the Burt table. Thus, to examine similarities between the modalities we examine
the gap between each profile-modality and its average profile, that is, the gap to
independence. This best adjacency matrix can be written as follows:
Definition 3. Reference adjacency matrix{

Vu∗(xkr, xls) = 1 if Bkr ls
Bkr ..

≥ Bkr ..
np2 ; ∀k, l = 1, p ; r = 1, mk and s = 1, ml

Vu∗(xkr, xls) = 0 otherwise.

Bkr ls = �n
i=1xkr

i xls
i is the element of the Burt matrix that corresponds to the

number of individuals who have the modality r of the variable k and the modality
s of the variable l,

Bkr .. = �
p
l=1�

ms
s=1bkr ls is the row margin of the modality r of the variable k,

Bkr ls
Bkr ..

is the row profile of the modality r of the variable k,
Bkr ..
np2 is the average profile of the modality r of the variable k, np2 being the

total number.
The binary and symmetric adjacency matrix Vu∗ is associated with an

unknown proximity measure denoted u∗ and called a reference measure.
The robustness of this positive deviation from independence can be studied

by setting a minimum threshold to analyze the sensitivity of the results. Cer-
tainly the numerical results will change, but probably not their interpretation.

Thus, with this reference proximity measure we can establish S(Vui , Vu∗), the
topological equivalence of association between the modalities of the p variables,
by measuring the percentage of similarity between the adjacency matrix Vui and
the reference adjacency matrix Vu∗ .

To graphically describe the similarities between proximity measures, we
can, for example, apply the notion of themascope (Lebart 1989), which is a
methodological sequence of a clustering method on the results of a factorial
method. In this case of this article, a principal component analysis (PCA)
followed by a hierarchical ascendant classification (HAC) were performed upon
the 22 component dissimilarity matrix defined by [D]ij = D(Vui , Vuj) =
1 − S(Vui , Vuj) to partition them into homogeneous groups and to view their
similarities to see which measures are close to one another.

We can use any classic visualization techniques to achieve this. For example,
we can build a dendrogram of hierarchical clustering of the proximity measures.
We can also use multidimensional scaling or any other technique, such as a
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Laplacian projection, to map the 22 proximity measures into a two-dimensional
space.

Finally, to evaluate and determine the closest class of proximity measures to
the reference measure u∗, we project the latter as a supplementary element into
the two data analysis methods, positioned by the dissimilarity vector with 22
components [D]∗i = 1 − S(Vu∗ , Vui).

2.2. Statistical comparisons between two proximity measures

In this section, we use Cohen’s kappa coefficient (Cohen 1960) to test statistically
the degree of topological equivalence between two proximity measures. This
nonparametric test compares these measures based on their associated adja-
cency matrices.

The comparison between indices of proximity measures has also been studied
by Schneider and Borlund (2007a, 2007b) and Demsar (2006) from a statistical
perspective. The authors proposed an approach that compares similarity matri-
ces obtained by each proximity measure, using Mantel’s test (Mantel 1967), in a
pairwise manner.

Cohen’s nonparametric Kappa test is the statistical test best suited to compare
matched binary data, while another good option is the Fisher’s exact test (Fisher
1922), which is an alternative to the chi-square test when the size m of the sample
is small. The Kendall or Spearman coefficient compares matched continuous
data. It makes it possible in this context to measure the agreement or the
concordance of the binary values of two adjacency matrices associated with two
proximity measures.

Let Vui and Vuj be adjacency matrices associated with two proximity mea-
sures, ui and uj. To compare the degree of topological equivalence between
these two measures, we propose to test if the associated adjacency matrices are
statistically different or not, using a nonparametric test of paired data.

These binary and symmetric matrices of order m are unfolded in two vector-
matched components, consisting of m(m+1)

2 values: the m diagonal values and
the m(m−1)

2 values are above or below the diagonal.
The degree of topological equivalence between two proximity measures is

estimated from the kappa coefficient, computed on the 2 × 2 contingency table
formed by the two binary vectors, using the following definition:
Definition 4. Kappa coefficient

κ̂ = κ̂(Vui , Vuj) = Po − Pe
1 − Pe

,

where,
Po = 2

m(m+1)

∑1
k=0 nkk is the observed proportion of concordance, and

Pe = 4
m2(m+1)2

∑1
k=0 nk.n.k represents the expected proportion of concor-

dance under the assumption of independence.
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The kappa coefficient is a real number, without dimension, between −1 and
+1. The concordance is higher the closer the value of Kappa is to 1 and the
maximum concordance is reached (̂κ = 1) when Po = 1 and Pe = 0.5. When
there is perfect independence, κ̂ = 0 with Po = Pe, and in the case of total
mismatch, κ̂ = −1 with Po = 0 and Pe = 0.5.

The true value of the kappa coefficient in the population is a random variable
that approximately follows a Gaussian law of mean E(κ) and variance Var(κ).
The null hypothesis H0 is κ = 0 against the alternative hypothesis H1 : κ > 0.
We formulate the null hypothesis H0 : κ = 0, independence of agreement or
concordance. The concordance becomes higher as κ tends towards 1, and is a
perfect maximum if κ = 1. It is equal to −1 in the case of a perfect discordance.

We also test the topological equivalence between each proximity measure ui
and the reference measure u∗ by comparing the adjacency matrices Vui and Vu∗ .

2.3. Graphical representation of the topological associations

To represent graphically the possible topological links between the m modalities
of the p qualitative variables, we use multidimensional scaling (MDS). This
allows us to visualize a proximity matrix (similarity or dissimilarity) and makes
it possible to pass from a proximity matrix between a set of n objects to the
coordinates of these same objects in a p-dimensional space. We propose to
carry out the classical MDS, namely factorial analysis on the similarity Vu∗ or
dissimilarity Du∗ = U − Vu∗ table Cailliez and Pagès (1976). The topological
multiple correspondence analysis (TMCA) returns to perform the following
PCA:

Definition 5. TMCA consists to perform the PCA of the triple {Vu∗ ; M ; Dm},
where, Vu∗ is the adjacency matrix associated with the proximity measure u∗,
the most appropriate measure for the considered data, M = Im is the identity
matrix of order m and Dm = W

np is the weighted diagonal matrix of the m
modality weights.

One can also opt for a normalized PCA if one wishes to give the same weight
to all the variables in the calculation of the distance between two modalities.

This topological analysis leads to the spectral decomposition of the M-
symmetric and positive matrix tVu∗ Dm Vu∗ M, whose explained inertia is equal
to 1

np trace(tVu∗ W Vu∗), with the first m − p − 1 nonzero eigenvalues.
We can thus establish the topological correspondence analysis of each of the

22 proximity measures ui considered, by carrying out a PCA of the Vui adjacency
data table.

The PCA aids in the interpretation of TMCA results. Graphical representa-
tions of factorial plans allow the visualization and identification of the topo-
logical links between the modalities of the variables. As in weighted PCA, we
consider the most significant modalities on the axes, that is, the modalities which
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Table 1. Burt table—Female entrepreneurship in Dakar, Senegal.
Variables

Modalities Age Marital status Number of children Level of study

Under 25 22 0 0 18 2 1 1 13 3 6 3 1 18
25–50 years 0 80 0 16 9 21 34 14 11 55 58 5 17
Over 50 0 0 51 3 8 24 16 8 35 8 30 10 11

Single 18 16 3 37 0 0 0 20 3 14 9 1 27
Divorcee 2 9 8 0 19 0 0 3 10 6 13 5 1
Monogamous bride 1 21 24 0 0 46 0 7 21 18 26 5 15
Polygamous bride 1 34 16 0 0 0 51 5 15 31 43 5 3

No children 13 14 8 20 3 7 5 35 0 0 11 5 19
From 1 to 3 children 3 11 35 3 10 21 15 0 49 0 27 9 13
More than 3 children 6 55 8 14 6 18 31 0 0 69 53 2 14

Illiterate-Primary 3 58 30 9 13 26 43 11 27 53 91 0 0
Secondary 1 5 10 1 5 5 5 5 9 2 0 16 0
Higher 18 17 11 27 1 15 3 19 13 14 0 0 46

have both a strong relative contribution and a good quality of representation,
measured by the square cosine of the angle formed by the point-modality and
its projection on the factorial plane being considered.

3. Application to real data

To illustrate the TMCA, we considered the data displayed in Table 1 of
a study on female entrepreneurship conducted in Dakar, Senegal in 2014.
These data were collected from 153 female entrepreneurs of the Dakar region,
and their objective here is to give a topological description of the sample’s
demographic features: age, marital status, number of children and level of
study.

In a metric and classical context, we simply have to apply an MCA on
the homogeneous set of the four characteristics of the female entrepreneurs.
The main numerical and graphical results of this MCA, given in Table A3
in Appendix A and in Fig. 4, will be compared to those of the proposed
TMCA.

In a topological context, the main results of the proposed method are pre-
sented in the following tables and graphs, which allow us to visualize proximity
measures close to each other and to select the one that best describes the
associations between the modalities of the four characteristics of the sample
population.

An HAC algorithm based on the Ward (1963) criterion1 was used to charac-
terize classes of proximity measure relative to their similarities.

1Aggregation based on the criterion of the loss of minimal inertia. Ward’s method is a criterion applied in
hierarchical cluster analysis; it is a general agglomerative hierarchical clustering procedure. With the square of
the Euclidean distance, this criterion allows one to minimize the total within-cluster variance or, equivalently,
maximize the between-cluster variance.
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Figure 2. Hierarchical tree of the proximity measures.

Table 2. PCA & HAC results—Assignment of the reference measure.
Class number Class 1 Class 2 Class 3 Class 4
Frequency 8 5 3 6

uJaccard uPearson uRussell-Rao uSimple-Matching
uDice uSokal-Sneath-4 uSimpson uRogers-Tanimoto

Proximity uSokal-Sneath-2 uQ-Yule uBC uHamann
measure uOchiai uY-Yule uSokal-Sneath-3

uKulczynski uMichael uGower-Legendre
uBaroni-Urbani-Buser uSokal-Sneath-1

uSokal-Sneath-5
uBraun-Blanquet

Reference measure u∗

The reference measure u∗ is projected as a supplementary element. The den-
drogram in Fig. 2 represents the hierarchical tree of the 22 proximity measures
considered.

Table 2 summarizes the main results of the chosen partition into four homo-
geneous classes of proximity measure, obtained from the cut of the hierarchical
tree in Fig. 2.

Moreover, in view of the results in Table 2, the reference measure u∗ is closer
to the third class consisting of Russell-Rao, Simpson, and BC measures for
which there is a strong topological association between the modalities of the
variables among the 22 proximity measures considered. We will have a stronger
association between the variables of the typical profile of the entrepreneur in
Dakar, Senegal.
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Table 3. Measures with perfect topological equivalence.
Group 1 Group 2 Group 3

uJaccard uPearson uSimple-Matching
uDice uSokal-Sneath-4 uRogers-Tanimoto

uSokal-Sneath-2 uHamann
uSokal-Sneath-3
uGower-Legendre
uSokal-Sneath-1

It was shown in Zighed, Abdesselam, and Hadgu (2012), by means of a series
of experiments, that the choice of proximity measure has an impact on the
results of a supervised or unsupervised classification.

For any pair of proximity measures given in Table A1 in Appendix A, we
built and applied the Kappa test to compare the two adjacency matricies and to
measure and test their topological equivalence. Thus, for example, for the pair
(u∗ ; uRR), reference and Russell-Rao proximity measures, the calculated Kappa
value κ̂ = 0.5939 corresponds to a p-value less than 0.01%. Since this probability
is lower than a prespecified significance level of 5%, the null hypothesis that
κ = 0 for these data (no agreement) is rejected. We can therefore conclude that
the topological equivalence between the two proximity measures, measured by
S(Vu∗ ; VRR) = 79.88%, is significant.

Table A2, given in Appendix A, summarizes the similarities and Kappa statis-
tic values between all pairs of proximity measures formed with the 22 measures
considered and the unknown reference measure u∗, in a topological framework.
The values below the diagonal correspond to the similarities S(Vui , Vuj) and
the values above the diagonal are the kappa coefficients κ̂(Vui , Vuj). All Kappa
statistical tests are significant with α ≤ 5% level of significance.

The similarities in pairs between the 22 proximity measures differ somewhat:
some are closer than others. Some measures are in perfect topological equiv-
alence S(Vui , Vuj) = 1 with a perfect concordance κ̂(Vui , Vuj) = 1; these are
therefore identical for the data considered, as is the case with the measure groups
presented in Table 3.

The adjacency matrix Vu∗ associated with the proximity measure best
adapted to the considered data, u∗, is established from the profile of Table 4.

Figure 3 shows on the main first TMCA plan, the significant links between the
modalities of the signage of female entrepreneurship. The links are materialized
by geometric shapes.

Figure 4 presents, for comparison, on the first factorial plan, a graphical
representation of the classical multiple correspondence analyse (MCA) (Escofier
1979; Greenacre and Jörg 2006).

Unlike the MCA method, which describes only three strong links, the TMCA
highlights four: two opposing on the first factorial axis (56.35%) and the other
two on the second factorial axis (32.01%).
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Table 4. Row and average profiles.
Row-profiles Age Marital status Number of child Level of study

Under 25 years 0.25 0 0 0.205 0.023 0.011 0.011 0.148 0.034 0.068 0.034 0.011 0.205
25 to 50 years 0 0.25 0 0.050 0.028 0.066 0.106 0.044 0.034 0.172 0.181 0.016 0.053
Over 50 years 0 0 0.25 0.015 0.039 0.118 0.078 0.039 0.172 0.039 0.147 0.049 0.054

Single 0.122 0.108 0.020 0.25 0 0 0 0.135 0.020 0.095 0.061 0.007 0.182
Divorcee 0.026 0.118 0.105 0 0.25 0 0 0.040 0.132 0.079 0.171 0.066 0.013
Monogamous 0.005 0.114 0.130 0 0 0.25 0 0.038 0.114 0.098 0.141 0.027 0.082
Polygamous 0.005 0.167 0.078 0 0 0 0.25 0.025 0.074 0.152 0.211 0.025 0.015

No children 0.093 0.100 0.057 0.143 0.021 0.050 0.036 0.25 0 0 0.079 0.036 0.136
From 1 to 3 child 0.015 0.056 0.179 0.015 0.051 0.107 0.077 0 0.25 0 0.138 0.046 0.066
More than 3 child 0.022 0.199 0.029 0.051 0.022 0.065 0.112 0 0 0.25 0.192 0.007 0.051

Illiterate-Primary 0.008 0.159 0.082 0.025 0.036 0.071 0.118 0.030 0.074 0.146 0.25 0 0
Secondary 0.016 0.078 0.156 0.016 0.078 0.078 0.078 0.078 0.141 0.031 0 0.25 0
Higher 0.098 0.092 0.060 0.147 0.005 0.082 0.016 0.103 0.071 0.076 0 0 0.25

Average profile 0.036 0.131 0.083 0.061 0.031 0.075 0.083 0.057 0.080 0.113 0.149 0.026 0.075

Figure 3. TMCA—Adjacency matrix and graphical representation.

Considering percentages of inertia presented in Table A3 in Appendix A,
which represent the associations between all modalities, we restrict the com-
parison of the graphical representations to the two first factorial axes.
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Figure 4. MCA—Graphical representation.

One can also represent the graphical representation associated with a perfect
topological independence built from the adjacency identity matrix.

We give, in Fig. A1 in Appendix A, the different TMCA graphical represen-
tations associated with 4 of the 22 proximity measures considered.

4. Conclusion

This work proposes a new topological method of MCA, TMCA, that enriches
the classical methods of qualitative data analysis. This work compares existing
proximity measures to perform a TMCA based on the notion of neighborhood
graphs according to the considered data. Future work involves extending this
topological approach to other factorial methods of data analysis, especially to
analyze the correlation structure of a set of continuous variables, topological
principal component analysis, or to synthesize the relations existing between
two groups of continuous variables, topological canonical analysis.
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Appendix A

Table A1. Some proximity measures.
Measures Similarity Dissimilarity

Jaccard s1 = a
a+b+c u1 = 1 − s1

Dice, Czekanowski s2 = 2a
2a+b+c u2 = 1 − s2

Kulczynski s3 = 1
2 ( a

a+b + a
a+c ) u3 = 1 − s3

Driver, Kroeber and Ochiai s4 = a√
(a+b)(a+c)

u4 = 1 − s4

Sokal and Sneath 2 s5 = a
a+2(b+c) u5 = 1 − s5

Braun-Blanquet s6 = a
max(a+b,a+c) u6 = 1 − s6

Simpson s7 = a
min(a+b,a+c) u7 = 1 − s7

Kendall, Sokal-Michener s8 = a+d
a+b+c+d u8 = 1 − s8

Russell and Rao s9 = a
a+b+c+d u9 = 1 − s9

Rogers and Tanimoto s10 = a+d
a+2(b+c)+d u10 = 1 − s10

Pearson φ s11 = ad−bc√
(a+b)(a+c)(d+b)(d+c)

u11 = 1−s11
2

Hamann s12 = a+d−b−c
a+b+c+d u12 = 1−s12

2
bc u13 = 4bc

(a+b+c+d)2

Sokal and Sneath 5 s14 = ad√
(a+b)(a+c)(d+b)(d+c)

u14 = 1 − s14

Michael s15 = 4(ad−bc)
(a+d)2+(b+c)2 u15 = 1−s15

2

Baroni, Urbani and Buser s16 = a+√
ad

a+b+c+√
ad

u16 = 1 − s16

Yule Q s17 = ad−bc
ad+bc u17 = 1−s17

2

Yule Y s18 =
√

ad−√
bc√

ad+√
bc

u18 = 1−s18
2

Sokal and Sneath 4 s19 = 1
4 ( a

a+b + a
a+c + d

d+b + d
d+c ) u19 = 1 − s19

Sokal and Sneath 3 u20 = b+c
a+d

Gower and Legendre s21 = a+d
a+ (b+c)

2 +d
u21 = 1 − s21

Sokal and Sneath 1 s22 = 2(a+d)
2(a+d)+b+c u22 = 1 − s22
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Table A2. Similarities S(Vui , Vuj ) and kappa coefficient κ̂(Vui , Vuj ).
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Figure A1. Jaccard (Class 1), Pearson (Class 2), Russel & Rao (Class 3), and Simple Matching (Class 4)
proximity measures.
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Table A3. Eigenvalues associated with the topological and classical multiple correspondence analy-
ses.

TMCA Axis Eigenvalue Proportion Cumulative

1 1.609 56.35% 56.35%
2 0.914 32.01% 88.36%
3 0.159 5.56% 93.91%
4 0.087 3.06% 96.97%
5 0.032 1.12% 98.10%
6 0.027 0.95% 99.05%
7 0.015 0.53% 99.59%

m − p − 1 → 8 0.012 0.41% 100.00%

Total 2.855 100.00% 100.00%

MCA Axis Eigenvalue Proportion Cumulative

1 0.585 26.01% 26.01%
2 0.462 20.52% 46.53%
3 0.285 12.67% 59.20%
4 0.222 9.85% 69.05%
5 0.212 9.40% 78.45%
6 0.166 7.39% 85.84%
7 0.126 5.60% 91.44%
8 0.101 4.48% 95.92%

m − p → 9 0.092 4.08% 100.00%

Total 2.250 100.00% 100.00%
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