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Abstract The proposed approach leads to analyzing the associations between a set
of quantitative variables and several qualitative variables measured on a same set of
individuals. In a decision-making context, the proposed method can be considered
as a generalization of discriminant analysis to the multiple groups’ variables case.
It’s described as a principal component analysis of the centres of gravity tables. The
decomposition of its duality diagram on a double diagram illustrates the link and
the passing properties between multiple correspondence analysis and discriminant
analysis. An application resulting from real data illustrates the utility of the discrim-
ination model thus defined.

1 Introduction

In this work, we describe an approach which leads to analyzing the correspon-
dences between a set of qualitative variables and several quantitative variables. In
a context of prediction and classification, the proposed Discriminant Multiple Cor-
respondence Analysis (DMCA) can be considered as a discriminant analysis on
several groups’ variables simultaneously. In a discrimination and classification aim,
this method of decision-making explains simultaneously more than one qualitative
group variable according to a set of quantitative variables. It’s a multivariate statis-
tical method derived from classical Discriminant Analysis (DA) used on the results
of Multiple Correspondence Analysis (MCA). An example resulting from real data
illustrates the results obtained with this method.
This approach leads to extending discrimination analysis to more than one group
variable to be discriminated as generalized discriminant analysis proposed in [3]. It
can be considered as a particular case of an extention of canonical analysis to more
than two groups of variables.
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2 Principle of the method

We use the following notations to explain the methodology of the discriminant
model approach. Let us denote:
X(n,p) the quantitative data matrix associated to the set of p discriminant centered
variables {x j ; j = 1, p}, with n rows-individuals and p columns-variables,
(y1, . . . ,yl , . . . ,ym) the set of m qualitative groups’ variables with q = ∑m

l=1 ql
dummy variables {yk

l ;k = 1,ql}{l=1,m}, that we wish to discriminate,
Yl (n,ql) the dummy variables matrix associated to the ql modalities of the variable yl ,
Y(n,q) = [Y1, . . . ,Yl , . . . ,Ym] the global matrix, juxtaposition of the matrix Yl (n,ql),
Ex = Rp and Ey = ⊕{Eyl}{l=1,m} = Rq are the individual subspaces associated by
duality respectively to the data matrix X(n,p) and Y(n,q),
Mx = V +

x is Mahalanobis distance (Moore-Penrose generalized inverse of the co-
variance matrix Vx ) in the explanatory subspace Ex,
Dn = 1

n In diagonal weights matrix of the n individuals, where In is the unit matrix
with n order,
Dq = Diag( Dy1 , · · · ,Dyl , · · · ,Dym ) diagonal matrix of weights’ matrix of the q cen-
tres of gravity,
χ2

y = D−1
q = Diag(χ2

y1
, · · · ,χ2

yl
, · · · ,χ2

ym ) diagonal matrix of Chi-square distance,
Nyl = {yl i ; i = 1,n} the configuration of individual-points associated to the rows of
matrix Yl .

Figure 1 shows the duality diagram corresponding to DMCA and its decomposition
according to that of PCA triplet (Ỹ = Y χ2

y , 1
m Dq , Dn ) corresponding to MCA of

the q modalities associated to the m group variables.

t G(p,q)
t X(p,n)

tỸ(q,n)
Ex = Rp ←− F?

x = Rq Ex = Rp ←− F?
y = Rn −→ Ey = Rq = Fx

V +
x ↓ DMCA ↑ 1

m Dq V +
x ↓ ↑ Dn MCA ↓ 1

m Dq

E?
x = Rp −→ Fx = Rq E?

x = Rp −→ Fy = Rn ←− E?
y = Rq = F?

x
G(q,p) = tỸ Dn X X(n,q) Ỹ(n,q) = Y χ2

y

Fig. 1 DMCA duality diagrams.

The principal moments and principal vectors of MCA are eigenanalysis (normed)
of the operator: tỸ Dn Ỹ 1

m Dq = t(Y χ2
y )Dn Y χ2

y
1
m Dq = χ2

y Vy χ2
y

1
m Dq = 1

m χ2
y Vy ,

with inertia equal to: I(Nỹ) = 1
m trace(χ2

y Vy) = 1
m ∑m

l=1 χ2
yl

Vyl = 1
m ∑m

l=1 ql −1.
Note that the diagonalized matrix χ2

y Vy is the centered row profiles of Burt table.

Definition 1. DMCA consists to make the following principal component analysis:
PCA(G = χ2

y Vyx , V +
x , 1

m Dq).
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Likewise, the principal moments and principal vectors of DMCA are eigenanalysis
(normed) of the operator: tG 1

m Dq GV +
x = 1

mVxy χ2
y Vyx V +

x ,
with explained inertia equal to:

Ix(Nỹ)= I(Ng)= 1
m trace(Vxy χ2

y Vyx V +
x )= 1

m ∑m
l=1 Vxyl χ

2
yl

VylxV
+
x = 1

m ∑m
l=1 Ix(Nyl ),

where, tG(p,q) = [ tG1, . . . ,
t Gl , . . . ,

t Gm ] is the superposition of the m centres of grav-
ity tables associated to Px(Nỹ), with Gl (ql ,p) = χ2

yl
Vylx, Vylx = tYl Dn X the covariance

matrix and Px the orthogonal projection operator in subspace Ex.

Finally, in a practical point of view, DMCA appears as a classical DA, i.e., a PCA
of the centres of gravity tables in the explanatory subspace Ex with Mahalanobis
distance. The ratio of explained inertia is equal to

Ix(Nỹ)
I(Nỹ)

= ∑m
l=1 Ix(Nyl )

∑m
k=1 qk−1 .

3 Application example

To illustrate this approach, we use real data published in [8] which concerns char-
acteristics of twenty-seven small cars of Belgium market. This data set contains
seven quantitative variables: Price, Consumption, Cubic capacity, Speed, Volume
of the boot, the Weight/Power ratio and the Length of the cars, and three qualita-
tive groups’ variables: the horsepower (4CV, 5CV, 6CV), the trademark (French,
Foreign) and the range (Economic, Traditional, Polyvalent, Turbo) of the cars, with
q = 9 modalities in total.

                   

Polyvalent Economic Turbo Traditional 
French Foreign 4CV 6CV 5CV 

Fig. 2 Simultaneous representation of individuals-cars and centres of gravity.
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The aim is to bring to the fore the mixed characteristics which differentiate well
and separate the nine car groups constituted by the three qualitative target variables,
according to the seven quantitative characteristics of the cars.
Figure 2 summarizes the main graphical result of DMCA, i.e. the good separation
between the different groups on the first discriminant plane which explain 72.01% of
the total variability, i.e. of the total explained inertia. Concerning the performance of
the discrimination rule of DMCA, the ratio of explained inertia and the percentage
of well classified, according to the three groups’ variables, are respectively equal to
70.78% and 85.18%.

4 Discussion and conclusion

In this work, we present a methodology which extends discriminant analysis to sev-
eral groups’ variables simultaneously as a particular principal component analysis
of results of multiple correspondence analysis. The main advantage of this method
is its simplicity and facility, it finds interest in the context of the classification and
scoring techniques; especially in sensometry, chimiometry, economics and insur-
ance fields. With one group variable, DMCA is a classical DA. With two groups’
variables, DMCA is a discriminant analysis on contingency table as correspondence
discriminant analysis proposed in [9] and [10]. DMCA can also be used with mixed
explanatory variables [1]. Finally, it will be interesting to compare the performance
of this approach with that of canonical analysis with more than two groups of vari-
ables.
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