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Abstract. 'Theproposed model aIlo~s analyses which are more powerful than Fac-
torial Discriminant or Corresponde~ce: Analyses; it may be considered as a useful
complement to MultivariateAnalysisof Variance, Comparing to MANOVA, statis-
tics are not carried out fromvariables, but from statistical uni ts. The statistical
unit space, linked to the variable space by an isometry, contains two orthogonal
subspa~é's assaciated to mean-and residual values as weiL ,

Finally, lnertiaof configurations of points in the unitspace, used in particu-
lar to determine factorial aXes,can measure either symmetrical or dissymmettical
association coefficients from explanatory variables to independent variables,

1 Introduction

ln the geometrical Relational Model proposed, vectors represent statistical
units (s.u), for example individuals. We can describe different configurations
of s.u. points, located in a maximum of four subspaces,associated respec-
tively to independent variables, explanatory variables, in particular durnmy
variables associated ta the levelsof acontrolled factor, .mean and residual
variables. The Relational Modelis of sorne interest because the distance in
s.u, space is Relational (Schektman (1978)), Le. taking into account relation-
ships observed between variables. '

_ Section 2 is concerned with a brief description of Relational Distances.
Sorne proofs of the suitability of this choice are given in section 3. We show,
insection 4, that the a priori general Relational Model can be simplified and
we givesorne propertiesof practical i~terest. "

To shorten this paper, notations arenot described as saon as we are able
to understand them, without .difficulty, by analogy with similar notations
defined above. We do the same for sorne properties and we give references for
sorne proofs which have already been published.

2, Relaticinal distances
<. »,

{xi} and {zk} being twosets of zero mean variables, observed on the same
population of statistical units (s.u.), let us denote:
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- Ex [resp. Ez] the subspace of the s.u. space E = Ex œ E; œ ... identified,
by the canonical injection lnx [resp.lnz], to an euclidean vector space
Ex [resp. Ez] whose dimension is equal to tire number of ~ariables {xi}

/ [resp. {zk}], . .
- lmt X c Ex [resp. Imt Z C Ez] the image of the mapping transpose of

the linear mapping X[resp. Z] defined by the matrix, denote X [resp. Z],
whose elements of the jth [resp. kth] column are the. values of variable
i [ "] . . -Ô:»x resp. Z,.· ....

- Xi E Ex [resp. Zi E E~]thes.u. vector whose coordinates are the elements
of ith row of matrix X [resp. Z], ,

- N", = {x;} C Ex [resp. Nz = {Zi} C Bz] the configuration of s.u. points
associated to the rows or' matrix X [resp. Z], ..

- Mx [resp. Mz] an .euclidean distance .in space Ex [resp. Ez],
D the diagenal euclidean. distance, whose.elements are the weights at-
tached to s.u., in .the variable space denoted F,. '" . .
{Àj(x)} [resp. {>.k(Z)}), {Cj(x) EEx} [resp.{c·k(Z)E Ez}land{Ci(x) =
[Àj (X)]-1/2 X M",cj(x) E F} [resp. {Ck(z) E F}] respectively the principal
inertia moments and a basis of principal vectors of N", [resp. Nz], and the
corresponding normalized principalcornponènts, with respect to the pair
of distances ( Mx , D ) [resp. ( u, ,D )],

- P; [resp. P;] the orthogonal projection operator; in space Ex [resp. Ez],
onto the sth principal axis spanned by cs(x) [resp. cs(z)].

Note that the use of generalized inverse is necessary when variables {zk} are,
in particular, the zero .mean dummy variables associated to the levels pf a .
factor because dimension of lmt Z equals dimE~ -1 thus VzMz is singular.

Lemrna l'

Lèt Ux = XM",[(V",Mi)I/2j+ and U; = ZMz[(VzMz)I/2]+.

al) (Vsf)...(x)f. 0) U,,[cs(x)] = C8(x) ; KerU", = (ImtX).l ,ImU", = ImX.
a:2) u; is apartiàl isometry from Imt.xc E", onto ImX C F.
b) Same propertlee for Uz' •
ln the following property, U is the partial linéar mapping defined by

çv'(t = luxer) + lnz(s) f r E Ex, sE 'Bz)) U(t) = Ux(r) + U~(s) E F.

Definition

M is a Relational (serni-) Distance in s.u, 'spacé E,with respect to the sets
of variables {xi} and {zk}, if and only if

a) M[Inx(ci(x)), lnz(ck(z))j = D[Ci(x), çk(z)] if Ài(X)Àk(Z) f. Of"- (1)
b) M[lnx(u), lnz(v)] = a if u E (Irn'X') ': or if v E (lmt Z).l. .•

For convenience we shall use indifferently tz or Inxf u) in th~ followirrg. It is
shown (Schektman (1978)-(1994») and Croquette (1980») the following prop-
erty 1 and lemma 1. '

Property 2

.Sêt:'~h!!'iOÙO~in,g:'!assertions:. .

a) (V(h, t2) E (Imînx' X Œl l~lnz t z)2) M(tl, t2) = D[U(t!), U(t2)].
b) The image, via U, of each pair of canonical variables carried out from

(Imlnx tX, lmlnz t Z, M) isa pair of canonical variables carried out from
(IrriX, ImZ, D), moreover the corresponding canonical correlation coef-
ficients are equal. .

c) The restriction of M to Imlnx' X œ lmlnz tZ is an euclidean distance.

Wè have: Al «(1) {;:}(a) <=> (b),
El (a) =} (ImX n ImZ = {O} {;:}(c)).

Property 1

Given that tlnxMlnx = M", and tlnzMlnz = Mz, where (Mx, Mz) is a pair
of euclidean distances, M is a Relational (semi-) Distancewith respect to the
sets of variables {xi} and {zk}, if and only if

ilnxMlnz = M",[(VxMx)I/2l+ Vxz Mz[(Vz Mz) 1/2]+ (2)
where '

- \Ix = iXDX, Vz = tZDZ, Vu = tXDZ, .
- for t equal x or z, [(VtMdl/2]+ = L [Às(t)]-1/2 Pt' is the Moore-

{S/À,(t);iO}

Penrose generalized inverse of (FtMt)I/2, weighted by Mt. •

Proof

Al (a) =} (1) : obvious as lemma 1-a1-b holds.
(1) =} (a) : starting from expressions of tl and t2 in a basis of principal
vectors, then, by developing M(tl, t2), using (1), -êqualittes of norms and
angles for corresponding, Cj and Ci, and finally lemrna l-a l-b, it cornes
the developmentof D[U(tl), U(t2)] telatively to principal' vectors.
(a) =} (b) : obvious as lernma 1-a2-b holds, reasoning by absurdo
(b) =* (a) : similar proof as for (1) =>- (a)), but starting from expressions
of tl and h in a basis of canonical variables.

Bj d'iveb that Dis an euclidean distance, bilinearity, symmetry and posi-
tivity of the restriction of M follow immediately from (a); furthermore,
giyen that U is a linear mapping, IrnX n ImZ· = {a} is equivalent to "U
is à -partial bijection from Imlnx' X œ lmlnz tZ onto ImX œ ImZ" ,

~equivalent ta (Vt E (lmlnx tX œ Imlnz tZ, t f. 0) * U(t) f. 0)
and finally, according to the properties of M, equivalent to (c), because
(a) =} (U(t) # 0 {;:} M(t,t)f. 0). •

It cornes that if (1), Le. property 2-a, holds th en U is a partial isometry from
Irn lnx' X a1 Imlnzt Z onto ImX ffi IrnZ if and only if IrnX n ImZ = {a}.
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3 Furtdamental results

- Pz the orthogonal projection operator onto E; C E(Pz is defined be-
cause the restriction of Mto Ez is an euclidean dist~nce (Schektman
and Abdesselam (2000))), .

- P: [resp. P:] the orthogonal projection operator onto.the sth canonical
axis, carr ied out from (Imlnxt'Xi; Irnlnzt Z, M),' belongingto Ex [resp;.
Ez),

- N; = {Pz (Xi) 1 Xi E N,;}C Ex,c.,E,
il: = {P;(Xi)[ Xi E Nx}CE", CE,;

- [[N;] [resp. I[N;J] the inertia of N; [resp. 1V;laccording to its centre of
gravit y (origin of E),

- Ps the sth canonical correlation coefficient carried out fra/TI(lm~, ~ll!.Z,D),
- Qz the orthogonal projection operator onto ImZ, ,... ..

ln property 3-a, we ~ive a statisti~al'and ge~metricat constructionof .N:,
configuration of points which plays a fundalllentai role 'in our p.ppro~c~.·

[[N;] synthesizes, in term of inertia, the classical syrrimetrical~sociation
indices. Moreover, the principal axes ofN;ancl thecorresponding principal
components arevaccordlng iothe types ofvariables {xi} and {zk}, those
of Factorial Correspondence Analysis (Beniecri(1982)) or Faétorial Discrim-
inant Analysis -:

b) If Mx is the unit matrix then [(N;) = 'Ei 1\ Qz(xi) 112 (property 3-c)
and [(Nx) = 'Ei Il xi 112: soleN;) 1[(N",) synthesizes, in terms of inertia,
the classical dissymmetrical association coefficients (Goodman-Kruskall -r,
Stewart-lové coefficient (1968)). These properties are used, in particular, to
define a Factorial Dissymmetrical Correspondence Analysis (Abdesselam and
Schektman(1996)) .

Let us den ote:

4 Relational model

Note 1

Let vs give sorne more fundamental results (Schektman(1987)) which .illus-
trate the significant information contained inN;. .'.

a) If Mx = (t X DX)+, where "+" denotes the Moore-Penros~ generalized
inverse, th en I(iI:] = 1 and consequently [[N;] = L. P; (property 3~b): so

4.1 Qiéneral model .

. {xi} and {yk} being respectively independent' vadabÎes and explanatory vari-
ables, let: .

- {gi = Q,,(xj)} called mean variables if {yk} are the zero mean dummy
variables associated to the levels of afactor, or fitted variables otherwise,

- {ri = xi - gi} called residual variables, J

where Qy is the orthogonal projection operator ontolmY CF.
Of course, we define for variables {yk}, {gi} and {ri}, the same notations

EiJ, ImY, P", Q", ... , as defined in sections 2and 3 but for variables {zk}

We have the following classical results :

- variables {gi}'arid {ri}ar~ zero ~~~ns .. '
- ImG C ImY , ImR,.L ImY , IrnX C ImG ffi ImR. (3)
- Vry = Vrg = 0, Vg = Vxg == Vgx, Vgv = Vxv" Vr = lin = Vrx = V", - Vg.

As for variables {xi}, a configuration of s.u. points, denoted,iNg [resp. Nr],

isassociated to variables {yi} [resp. {ri}]. _
Theproposed Relational Model must satisfy the following hypotheses:

Hl) E= e; ffi s, ffi s, ffi Er.
. H2) .M Îs a relational (semi-) distance in E for each of the six pairs of sets of

variables defined justabove.
H3) Distances in spacesEgand Er are equal to euclidean distance Mx in Ez,:

it isindeed reasonable to "see' Ngand N; in the same way as Nz:

According to Note 1, Ev is.,the "explanatory" subspace upon which we shall
project s.u. {Xi}' So the nature of euclidean (semi-) distance in E" is of no
importance; however, we shall optfor the Moore-Penrose generalized inverse
of V"' denoted Vy+, for its use simplifies calculations. Note that we can opt
for the chi-square distance if {yk} are associated to a factor.

Property 3

If M is relational for variables {xi} and {zk} then

a) Pz(x;) = LP:P;(Xi) with Il P:P;(Xi) Il,= P. Il P;(Xi) II·
s .' '.' .

b) I[N;] = 'Ep;I[iI;].
s

c) [lN;] = LÀj(X) Il Qz[Ci(x)] W = LÀi(x) Il Pz[Cj(x)] W
j i

= 'E (M"']ii' D(Qz(xi), Qz(xi')]
(i,n

where [Mx]jj' is the (j,j') element of matrix Mx.

Proof

As Nx C lm -x, we have Inx(~i) = 'Es- P;Inx(Xi) then,,(a) follows from
projective property of cauonicalaxes and property 2-A. As canonical axes
are orthogonal~obviously (a) ::} (b). (c) is shown in (Schektman(i9g4)). _
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Property 4

a) M is an euclidean semi-distance; its restriction to Imlngta ffi Irnlrir! R
is a distance.

b) e, ..LEr.

PxPg1nx = Inx[(V:r.Mx)1/2J+ Vg Mx [(vx Mx)1/2J+ using (6);

then adding P",(Pg + Pr)Inx = Inx, since Vr + Vg = Vx .

Proof

Therefore [[X - (Pg + Pr)(X) [[2 = M[x,x]- M[x, (Pg + Pr)(X)] = 0

for. M[x, (Pg + Pr)(X)] = M[x,Px(Pg + Pr)(x)] = M[x,x]. •
a) These results follow from (3) and property 2-B.
b) Using (2), it follows that Vrg = 0 =:} 'tlnrMlng = O. •

Accordingtolemma 2-b, euclidean representations of Ng and Ni are identi-
cal, sa the Relational Madel can be simplified by taking E = Ex EIl Eg ffi Er .
Rence variables {yk} only serve to calculate variables {gi}, and Eg replaces
Ev' Notice that Eg is of a richer nature than Ey since Eg :J Ng• This sim pli-
ficationcan be confirmed analytically: for, it follows

4.2 Simplified. model

Lemma 2

a) (Vg E Eg)
b) (Vx E Ex)
c) (Vx E Ex)

l[g-Py(g)II=O.
[[ Pg(x) - Pv(x) [[ = O.
[1 x - (Pg + Pr)(X) I[ = o.

• from (6) that the principal components and principal inertia moments
associated to principal axes of Ng, are characteristic elements of
X t[(V",Mx)1/2]+ t(VgMx)1/2 Mx (VgM",)1/2 [(V",M",)1/2)+ t X D
equal to X Mx [(VxMx)1/2)+ l'oMx [(VxMx)1/2]+ tX D . (9)

Il from (7) that the corresponding operator, but with N!i, is
XMx [(VxM"Y/2]+ v., Vy+Vy", M",[(VxMx)1/2)+ t X D equal to expres-
sion (9) sinee Vyx = Vyg and (5).

Proof

a) Wè have Pglny = IngM;l tlngMlny
= Ing[(VgM",)1/2]+Vgy Vy+[(Vy Vy+)1/2]+ using (2)
= Ing[(V: M )lj2]+v: v-v v:+9 . x. .... . 9V y y y
= Ing[(VgMx)t/2'I+Vg~V/ .

Pylng = InyVvgMx[(VgMx)1/2J+ . (4)

PgPylng = Ing[(Vg Mx)l/2]+ Vgv Vy+VygMx[(VgM;r)1/2J+ .TIng
v: v:+v. - taDyv:+tYDG - 'coo G ~ 'coc - v: (5)gy v yg - 'y - y . - - s :

[[9 - Py(g) W = M[g, g)- M[g, Py(g)] = 0
M[g,Py(g)]= M[Pg(g),Py(g)] = M[g,PgPy(g)] == M[g,g).

According to lemma 2-c euclidean represe'fit:ations of Nx and Ng+r == {Pg(Xi)+
Pr(Xi) / Xi E Nx}are identical; so, tlle M~del can be once more simplified by
taking E = Eg ffi Er and replacing Nx by Ng+r.

Sirnilarly

It follows Note 2
[or

Thus
[or

Using (6) and (8), the two following partitioned matrJces,

b) We have Pglnx = Ing[(VgMx)1/2]+ VJ~Mx[(VxM,z:)1/21+
= Ing(VgMx)1/2 [(VxM"Y/2)+ since Vg", = Vg. (6)

Using (G), (5) and Vyg= Vy"" it follows
PyPglnx = InyVyx Mx [cYx Mx)1/2]+ = Pv1nx . (7)

thus 1/ Pg(x) - Py(x) [1 = Il Pg(x) - PVPg(x) Il = 0 using (a)

X t([(V:M)1/2J+) "((VgM",)1/2), d (Mx 0)
x x . (VrMx)1/2 . an OMx

are respectively associated to Ng+r and to distanee M in E = Eg EB Er.

4.3 Saille properties

c) We have PxIllg = Inx[(VxMx)1/2]+(VgMx)1/2 since V",g == Vg
PxIllr = IllX[(V",M",)1/2]+ (VrMx}1/2 sinee V:i:r= Vr
PrIllX = Inr(VrM:i;)1/2 [(VxMx)1/2]+ since Vr'" = Vr. (8)

Pruper-ty 5

It follows PxPr1nx = Inx[cYxMx))/2]+ VrMx[(ViMx)1/2J+

Principal axes and principal inertia moments of Ni and Ng [resp. N; and
Nr] are identical; moreover , the principal components associated to principal
axes of 'Ng [resp. N;] belong to.Irn.X.
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Proof Pro of

It lollo\Vs from lernma 4 and lemma H. that Pg[c.(x)] = UOQg[C8(X)] and
Pr[c.(x)] = U*Qr[CS(x)]. Moreover,aS ImG 1. ImR, e, 1. Er and accord-
ing to lernma 3-a1-b thus U' is a partial isometry from IITlG œ ImR onto
ImIng 'c œ ImInr tR.. •

lt follows from (G) that principal axes and principal inertia moments of Nf
are characteristic elements of

(1!gM"Y/2 [(V",.i\{,,)1/2]+tXDX M",[(V",M"Y/2]+ (Vg~",)1/2 = VgM",

and the property of associated principal components is a consequence of (9).
Same proofs for N; and Nç, use in particular (8). _ Note 3

ImUr = ImR and ImUg = ImG. (10)

. .' .

According to Notel, symmetrical (Benzecri(1982») or dissymmetrical (Ab-
desselarn and Schektman(1996» Correspondance Analyses, with simultane-
OUS representationof tnodalities of'variables, are equivalent ta Principal Corn-
ponent Analysis (PCA) of(N% UNg), suitable distances being chosen in Eg.
So, the Relational Model leads us naturally to enrich the results, provided
by these analyses, with those of PCA of (N; U Nr);

Let Ug = GMx[(VgM",)1/2J+, U: == [(VgM",)l/ZJ+ tGD, Ur = RMx[(VrM.Y/2J+
and U: = [(VrM",)1/2]+ t RD. Obviously, Ur ane!.Ug have the sarne properties
(lem ma 1) as Ux; in particular .

It is easy to show the following lemma 3 (Schektman (1994». 5 Conclusion

IngU:QgUX = PgInx and InrU:QrUx = Prlnx.

Notes 1 and 3 clearly describe that Relational Model is a formaI tool useful
(i) to synthesize weil known FactorialAnalyses; (ii) toenrich provided results
with those extracted frorri résidual configurations ofs.u. poin~s, alld (iii) to
extend the areaof these analysesto dissymmetrical association coefficients.
Concerning this latter new approach, which is often more appropriateto the

. observed reality, yOUCÇl.nfindcriteria, a tooI, an exarnple and references in
(Abdesselam and Schektrnan (1996» ta know, in particular, how ta choose a
reasonabledissyrnmetricalassociation coefficient and for what benefits.

The fundamental utility of the Relational Model is to propose the orthog-
onal decomposition Xi = Pg(Xi) + Pr(Xi) of each s.u. vector, according to
mean and residual subspaces. Thus we hold in the s.u. space E what classi-
cally exils for each variable xi = Qg (xi) + Qr(xi) = ~i +ri, in the variable
space F. Moreover, E = Eg ffi Er and F being linkëd by an isometry,we
can enrich the representation of e.u, points on principal planes, with respect
either to fittecl (or mean) variables or residual variables, with' elements of F,
as indicated in Property 6.

These results may be useful, in MANOVA, if we really must try, for ourself,
to understand, with more details, variations observed on data. ln this case,
we shall notice that

• design matrix Y can either correspond to dumrny variables associated to
the lèvels of a factor or be deduced from a mill hypothesis on parameters,

• ûsing Property 3-c, I[N%] = Li ÀJCx) Il Qg[Gi(x)]IIZ = trace[VgMx].
. c> . .

Notice that I[N1J is equal to Pillai criteria if Mx = V.+.
Obviously, the Relational Model can be alsoof pratical interest in cluster-

ing or classification, where explanatory variables {yk} are quantitatives and
variables {xi} are dummy variables.

Lemma 3

al) U; is a partial isornetry from ImG onto ImtG.
a2) U: is the Moore-Penrose generalized inverse of Ug, weighted by the pair

of distances (Mx,D).
b) Same properties for U:. _
Lemma 4

Praaf

IngUiQgUx = IngUiUgUiUx = IngUiUx (Jemma 3-a2 and (10»
= Ing[(VgMx)1/2]+ tGDXMx[(VxMx)1/2]+
= IngM;l tIngMlnx = PgInx using (2).

Similar pro of for the second expression. _

Let U' be the partiallinear mapping defined by
(V(t = u+ w 1 u E IrnG, W E ImR» U*(t) := IngU:(u) -1- InrU:(w) E E.

Praperty 6
J

E = EgEBEr can be enriched withthe images, via U', of Qg[C' (x)], Q,.[Gs (x)],
gi = Qg (xi), ri = Qr(Xj

) and xi = Ls a~CS(x) Le. respectively with Pg[csex)J,
Pr[csex)], Ls a~Pg[cs(x)], L. a{Pr[cs(x)] and L. a{[Pg + PrJc.(X).
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Finally, as explanatory subspaee Im)" in the variable space, proved -its
utility for independent variables, we hope thata large scale use of eorre-
sponding subspace lm ty (or lm tG), in the Relaaîonal Model.wil! prove the
same, but for statistieal unitsor individu aIs.
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