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Abstract. The proposed model allows analyses which are more powerful than Fac-
torial Discriminant or Correspondence Analyses; it may be considered as a useful
complement to Multivariate Analysis of Variance. Comparing to MANOVA, statis-
tics are not carried out from variables, but from statistical units. The statistical
unit space, linked to the variable space by an isometry, contains two orthogonal
subépa&{s associated to mean and residual values as well.

Finally, inertia of configurations of points in the unit:space, used in particu-
lar to determine factorial axes, can measure either symmetrical or dissymmetrical
association coefficients from explanatory variables to independent variables.

b Introduction

In the geometrical Relational Model proposed, vectors represent statistical
units (s.u), for example individuals. We can describe different configurations
of s.u. points, located in a maximum of four subspaces, associated respec-
tively to independent variables, explanatory variables, in particular dummy
variables associated to-the levels of a ‘controlled factor, mean and residual
variables. The Relational Model is of some interest because the distance in
s.u. space is Relational (Schektman (1978)), i.e. taking into account relation-
shxps observed between variables.

Section 2 is concerned with a brief descmptlon of Relational Distances.
Some proofs of the suitability of this choice are given in section 3. We show,
in section 4, that the a priori general Relational Model can be sxmphﬁed and
we give some properties of practical interest. 3

To shorten this paper, notations are not described as soon as we are able
to-understand them, without difficulty, by analogy with similar notations
defined above. We do the same for some properties and we give references for
some proofs which have already been published.

2 Relational distances

{27} and {z*} being two sets of zero mean variables, observed on the same
~ population of statistical units (s.u.), let us denote:
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- E, [resp. E,] the subspace of the s.u. space E = E;® E, ... identified,
by the canonical injection Inx [resp.Inz], to an euclidean vector space
E, [resp. E,] whose dimension is equal to the number of variables {27}

- lresp. {+4))

- Im'X C E, [resp. Im Z C E,] the image of the mapping transpose of
the linear mapping X [resp. Z] defined by the matrix, denote X [resp. Z],
whose elements of the jth [resp. kth] column are the values of vanable
z7 [resp. z¥],

- z; € By [resp. zt € E,] the s.u. vector whose coordinates are the elements

of ith row of matrix X [resp. Z],

- N, = {z;} C E; [resp. N, = {2;} C E,] the conﬁguratlon of s.u. pomts ,

associated to the rows of matrix X [resp. Z],
- M, [resp. M,] an euclidean distance in space E; [resp. E,],

- D the diagenal euclidean distance, whose elements are the wenghts at-

tached to s.u., in the variable space denoted F, = -

- {2i(2)} [reqp {2k (2)}], {cj(z) € E;} [resp.. {ck(z) € E,}] and {C-’(:c)
A\ (@)]"V2 X Myc;(z) € F} [resp. {C¥(z) € F}] respectively the principal
inertia moments and a basis of principal vectors of N; [resp. IV,], and the

- corresponding normalized principal componeénts, with respect to the pair
of distances ( My , D) [resp. ( M, , D )],

- P¢ [resp. P§] the orthogonal projection operator, in space E; [resp. E.],
onto the sth principal axis spanned by cq(z) [resp. c,(z)].

Definition
M is a Relational (semi-) Distance in s.u. space E, w1th respect to the sets
of variables {z/} and {2*}, if and only if ~ .

a) M[Inx(c;(z)), Inz(ck(2))] = [C’(ﬂﬂ) C"(Z)] if A (-’B)Ak( )#0 ‘a (1>
b) M[Inx(u),Inz(v)] =0ifu € (Im'X)* orifv € (Im ZY" .

For convenience we shall use indifferently u or Inx(u) m the following. It is

shown (Schektman (1978)-(1994)) and Croquette (1980)) the followmg prop-
erty 1 and lemma 1.

Property 1

Given that {Inx M Inx = M, and tInzMInz = M,, where (M,, M,) is a pair
of euclidean distances, M is a Relational (semi-) Distance with respect to the
sets of variables {:cJ} and {zk}, if and only if

UnxMInz = Mg[(Ve M)Vt Vi, M, (V, M,)V/2]F (2)
where ’
-V,='XDX,V,=1'2D2,V,, = *XD2Z,
- for t equal z or 2z, [(ViM)/2]t = 3 [A(8)]7Y/2 P is the Moore-
i {s/X,(t)7#0}
Penrose generalized inverse of (V, M)'/2, weighted by M. ) u
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Note that the use of generalized inverse is necessary when variables {z*} are,
in particular, the zero mean dummy variables associated to the levels of a

~ factor because dimension of Im‘Z equals dimFE, — 1 thus V, M, is singular.

Lemma B :
Let U, = X M,[(V, M, )1/2] and U, = ZM,|(V, M,)/?}t.

al) (Vs/As(z) # 0) Us [es(2)] = C*(x) ; Kerl, = (Im‘X)* , ImU, = ImX.
a2) U, is a partial isometry from Im X C E, onto ImX C F
b) Same properties for U,. |

In the following property, U is the partial linear mapping defined by
(V(t =Inx(r) + Inz(s) / r € E;,s €' E,)) U(t) = Ue(r) + U,(s) € F.

Property 2

'Set =the followmg ‘assertions:

a) (V(t1,t2) € (ImInx tx D ImInz‘Z)2) M(tl,tz) = D[U(tl) U(tz)]

b) The image, via U, of each pair of canonical variables carried out from
(ImInx ‘X, Imlnz *Z, M) is a pair of canonical variables carried out from .
(ImX,ImZ, D), moreover the corresponding canomcal correlation coef-
ficients are equal.

¢) The restriction of M to ImInx X & ImInz'Z is an euclidean distance.
We have : A] (1) & (a) & (),
B] (@) = (ImX NImZ = {0} & (c¢))-

Proof

A] (a) = (1) : obvious as lemma 1-al-b holds.

(1) = (a) : starting from expressions of ¢; and ¢, in a basis of principal

vectors, then, by developing M (t1,12), using (1), £qualities of norms and

angles for corresponding c; and C¥, and finally lemma 1-al-b, it comes
the development of D[U(t;), U (ty)] relatively to principal vectors.

(a) = (b) : obvious as lemma 1-a2-b holds, reasoning by absurd.

(b) = (a) : similar proof as for ((1) = (a)), but starting from expressions

of ¢; and t3 in a basis of canonical variables.

B] Given that D is an euclidean distance, bilinearity, symmetry -and posi-
tivity of the restriction of M follow immediately from (a); furthermore,
given that U is a linear mapping, ImX NImZ = {0} is equivalent to “U
s a ‘partial bijection from ImlInx!X @ ImInz!Z onto ImX @® ImZ”,
equivalent to (Vt € (ImInx!X @ ImInz!Z, t #£ 0) = U(t) # O)
and finally, according to the properties of M, equivalent to (c), because
(@) = (UM #0 & M(t1)£0). "

It comes that if (1), i-e. property 2-a, holds then U is a partial isometry from

ImInx'X ® ImInz'Z onto ImX @ ImZ if and only if ImX NImZ = {0}.
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3 Fundamental results
Let us denote:

- P, the orthogonal projection operator onto E, C E(P, is defined be-
cause the restriction of M to E, is an euchdeau dlstance (Schektman
and Abdesselam (2000))),

- B¢ [resp. P¢?] the orthogonal progectxon operator onto.the sth canonrcal
axis, carried out from (ImInx X, ImInz‘ Z, M), belongmg to B, [resp:-
E.},

- N‘"{P(mt)/m,eN}CE Nady A

- N2 = {Pi(z:) [ 31 € No} C E, CE "a

- I[NZ] [resp. I[IVZ]] the inertia of IVZ [resp Nz)- accordmg to 1ts centre of
gravity (origin of E),

- ps the sth canonical correlation coefficient carried out from (ImX ImZ D),

- @, the orthogonal projection operator onto ImZz.

In property 3-a, we gwe a statxstlcal and geometrlcal constructlon of N z
configuration of pomts which plays a fundamental role i in our approach

Property 3 _
If M is relational for variables {2z} and {zk} phen- ,
2) Pula) = ¥ B2 B2(aa) with | B2B2(a:) |l = oo | B2Geo) ||
) 1INZ] = 5 A1), o
) 1IN = S 5(0) | QG @) [P = Tsta) | Py (ol P
= S MLy DIQA), Q)]

(4,3") :
where [M,];; is the (7,5") element of matrix M,.

Proof

As N, C Im'X, we have Inx(z;) = Y, P Inx(z:) then (a) follows from
projective property of canonical .axes and property 2-A. As canonical axes

are orthogonal, obviously (a) = (). (c) is shown in (Schektman(1994)). =

Note 1

Let us give some more fundamental results (Schektman(1987)) wl11ch illus-
trate the significant information contamed in NZ.

a) I My = (*XDX)*, where "+” denotes the Moore Penrose generahzed
inverse, then I[N?] = 1 and consequently I[NZ] = >, P2 (property 3-b): so
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I[N] synthesizes, in term of inertia, the classical symmetrical association
indices. Moreover, the principal axes of N7 and the corresponding principal
components are, according to-the types of variables {z7} and {z*}, those
of Factorial Correspondence Ana,lysxs (Benzecri(1982)) or Factorial Discrim-

inant Analysis..
b) If M, is the unit matrix then I(N7) = 32, || Q.(z7) ||? (property 3-c)

and I(Ng) = 3, |l 27 ||2 : so I(INZ) / I(N.) synthesizes, in terms of inertia,
the classical dlssymrnetncal association coefficients (Goodman-Kruskall 7,

- Stewart-love coefficient (1968)). These properties are used, in particular, to

define a Factorial Dissymmetrical Correspondence Analysis (Abdesselam and
Schektman(lgg(i))

4 R:elationol model -

4.1 General model

{27} and {y"} being respectlvely mdependent variables and explanatory vari-

ables let:

- {¢’ = Qy(a7)} called mean variables if {y*} are the zero mean dummy
variables associated to the levels of a factor, or fitted variables 0therw1se,
-{ri = a:’ — g’} called remdual varlables, P

where Q,, is the orthogonal pro _]ectlon operator onto’ ImY C F.
Of course, we define for variables {y*}, {g’} and {r}, the same notations
Ey, ImY, Py, Qy,---, as defined in sectlons 2 and 3 but for variables {z*}.

We have the followmg cla.ssxcal results

- variables {g7}" and {'r-’} are z6éro means.
- ImG CImY ,ImR 1 ImY , ImX C ImG & ImR. ' (3)
- ry"'Vrg"‘O Vg—ng—%z:,Vy'—waV Vzr—vrz:Vz_‘/g-

As for variables {z7}, a configuration of s.u. points, denoted N, [resp: N;],
is associated to variables {g7} [resp. {r7}].

The proposed Relational Model must satisfy the following hypotheses:

Hl) E=E,®E,® E; ® E,.

H2) Misa relatlonal (seml—) distance in E for each of the six pairs of sets of
variables defined just above. -

H3) Distances in spaces E, and E; are equal to euclidean distance M in B
it is'indeed reasonable to "see” Ny and Ny in the same way as V.

According to Note 1, E, isthe ”explanatory” subspace upon which we shall
project s.u. {z;}. So the nature of euclidean (semi-) distance in Ey is of no
importance; however, we shall opt for the Moore-Penrose generalized inverse
of Vy, denoted ’Vy+,'for its use simplifies calculations. Note that we can opt
for the chi-square distance if {y*} are associated to a factor.




364 Schektman and Abdesselam

Property 4

a) M is an euclidean semi- dlstance, its restriction to ImIng'G @ ImInr'R
is a distance.
b) E, L E,.

Proof

a) These results follow from (3) and property 2-B.
b) Using (2), it follows that V;y = 0 = *InrMIng = 0. ]

4.2 Simplified model

Lemma 2

a) (Vg€ Ey) |lg—Pyg)ll =0.
b) (Vo € E,) || By(a) ~ Py(s) || = 0.
c) (Vz € E) |z~ (Py+P)(z) || = 0.

Proof

a) We have PyIny = IngM; 1 Ing M Iny
- = Ing[(V,M,)/2]+V, WV V+)1/2}+ using (2)
= Ing[(V, M, )1/2]+ngv+v v
= Ing{(V, M, )1/ PrY Vot

Bienillagly PyIng = InyV,, M, [(V, M,)/?]+ . G

It follows  P,P,Ing = Ing[(V, M, )1/2]+VMV+VWM [(VeM)'?]* =1Ing

for VoV Vug = 'GDYV,F 'Y DG = ‘GDQ,G = 'GDG ,Vg. (5)

Thus || g~ P,(9) | = M[g,g] — M[g, P,(g)] = 0
for  Mlg, Py(9)) = M[Py(9), P,(g)] = Mg, P,P,(g)] =M]g, g).

b) We have  PyInx = Ing|(V, M,)/2]+ Voo M [(Va M )1/2)+
= Ing(V, M )1/2 [(Va M V2T since Vs =V, . (6)
Using (6), (5) and Vy, = Vi, it follows
Py PyInx = InyVyo My [(V, M) 2]+ = P,‘,Inx ; (7)
thus || Py(z) — Py() || = || Py(z) - FyPy(z) || =0 using (a) .
¢) We have PpIng = Inx[(Ve M) YV21+ (V, M,)1/? since V,, = Vg
Pylnr = Inx[(Ve M) /2] % (V. M,)'/2 since V,, = V
PrInx = Inr(Ve.M;)'/? (Vo Mp) 2% since Vg = V. . (8)

It follows P, P.Inx = Inx([(V, M,)!/2]+ XCA/[m[(VxMx)I/"']+
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P, PyInx = Inx[(Ve Mo)V2]+ V, M, [(Ve M2) /%) using (6);
then adding P, (P, + P.)Inx = Inx, since V. +V,=V,.

Therefore ||z — (Py + P)(z) ||> = M(z,z] — M[z, (P, + P.)(z)] = 0
for. Mlz, (P, +P)(:1:)]= [:z:P(P + P)(z)] = M|z, x| . L

According to lemma 2-b, euchdean representatlons of NJ and N Y are identi-
cal, so the Reldtional Model can be simplified by taking E = E, @ E, ® E,.
Hence variables {y*} only serve to calculate variables {g7}, and E, replaces
E,. Notice that E, is of a richer nature than E, since B, D N,. Thxs simpli-
ﬁcatxon can be conﬁrmed analytxcally for, it follows -

o from (6) that the principal components and principal inertia moments
associated to principal axes of N¥, are characteristic elements of
X*[(V M )1/2]+ t(VM )1/2 M, (V M )1/2 [(V M )1/2]+ tXD
equal to X My [(Va M) /2* V, M, [(Va M) /214X D . (9)

e from (7) that the corresponding operator, but with NY, is
XM, (VoM ) 21 Vo Vit Vye M. [(v M)V exD equal to expres-
sion (9) since Vyz =V, and (5).

Accordmg to lemma 2-c euclidean representatlons of Ny and Ngq.r = {P,(z:)+
P.(z;) | z; € N, } are identical; so, the Model can be once more simplified by
taking £ = F; & E, and replacmg Ng by Ngy,.

Note 2

Using (6) and (8), the two following partitioned matrices,

M) (E%%J) and (Ag ﬁ)

-

are respectively associated to Ny, and to distance M in E = E, @ E,.

4.3 Some properties

Propwerty 5

Principal axes and principal inertia moments of N¢ and N, [resp. NI and
N,] are identical; moreover, the principal components assocna,ted to principal
axes of NJ [resp. NI] belong to.ImX.
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Proof

It follows from (6) that principal axes and principal inertia moments of N¢
are characteristic elements of

(Ve M) 2 (Ve M)V Y X DX Mm[(VmMI)VZ]JF (Vng)l/-2 =V, M,

and the property of associated principal components is a consequence of (9).
Same proofs for V] and N, use in particular (8). L

Let Uy = GMg[(Vy M) 21+, U = [(V, M, YW EGD, U, = RM, [(V,M )2+

and U = [(V,. M,)Y/?]* tRD. Obvxously, Ur and U, have the same propertles
(lemma 1) as Uy; in particular ,

ImU, = ImR and ImU, = ImG. ' (10)

It is easy to show the following lemma 3 (Schektrﬁan (1994)).

Lemma 3

al) U;" is a partial isometry from ImG onto Im'G.

a2) U, i is the Moore-Penrose generalized inverse of U,, weighted by the pair
of distances (M, D).

b) Same properties for Ut.

|

Lemma 4

IngUg'FQgUz = P,Inx and InrU;FQ,.U, = P,Inx.
Proof 2
IngUfQuU: = IngU U, UFU, = IngU;“Uz (lemma 3-a2 and (10))

= Ing[(Vo M)/ 21+ tGDX M, [(Ve M) /?]+

= IngM; ! IngMInx = P,Inx using (2).
Similar proof for the second expression. |

Let U* be the partial linear mapping defined by :
(Vt=u+w/u€ImGwe ImR)) U*t) = IngUt(u) + InrU (w) € E.

Property 6

E Ly ® L, can be enriched with the images, via U*, of Q,[C* ()], @.[C* ()],
Q (z7),77 = Qr(zf) and 2f = 3" alC?(z) ie. respectlvely with Pylcs(z)],
[cs(as)] 2.0l Ples(@)), T, al Py [cs(m)] and ), af[P, + Prcs(z).
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Proof

It follows from lemma 4 and lemma 1-a that Py[cs(z)] = U*Q,[C*(z)] and
Pylcs(z)] = U*Q,[C?(z)]. Moreover, as ImG L ImR, E, L E, and accord-
ing to lemma 3-al-b thus U* is a partial isometry from ImG @ ImR onto
ImIng ‘G ® ImInrtR. . "

Note 3

According to Note 1, symmetrical (Benzecri(1982)) or dissymmetrical (Ab-
desselam and Schektman(1996)) Correspondence Analyses, with simultane-
ous representation of modalities of variables, are equivalent to Principal Com-
ponent Analysis (PCA) of (N U N,), suitable distances being chosen in E,.
So, the Relational Model leads us naturally to enrich the results, provided
by these analyses, with those of PCA of (N7 U N,):

5 Conclusion

Notes 1 and 3 clearly describe that Relational Model is a formal tool useful
(i) to synthesize well known Factorial Analyses; (ii) to enrich provided results
with those extracted from residual configurations of s.u. points, and (iii) to
extend the area of these analyses to dissymmetrical association coefficients.
Concerning this latter new approach which is often more appropriate to the
observed reality, you can find criteria, a tool, an example and references in
(Abdesselam and Schektman (1996)) to know, in particular, how to choose a

_rea_sdnable-dissymmetricalvassociation coefficient and for what benefits. -

The fundamental utility of the Relational Model is to propose the orthog-
onal decomposition z; = Py(z;) + P(z;) of each s.u. vector, according to
mean and residual subspaces. Thus we hold in the s.u. space £ what classi-
cally exits for each variable #7 = Q(z7) + Q,(27) = ¢ + r7, in the variable
space F. Moreover, E = E; @ E, and F being linked by an isometry, we
can enrich the representation of s.u. points on principal planes with respect
either to fitted (or mean) variables or residual variables, with elements of F),
as indicated in Property 6.

These results may be useful, in MANOVA if we really must try, for ourself

to understand, with more details, variations observed on data. In this case,

we shall notice that

o design matrix Y can either correspond to dummy variables associated to
the lévels of a factor or be deduced from a null hypothesis on parameters,
e Using Property 3-c, I[Ng] =3 /\-(:s) [ QolCI(z)] ||* = trace[Vy M)

~ Notice that I[N?] is equal to Pillai criteria if M, = V;'.

Obviously, the Relational Model can be also of pratlcal interest in cluster-
ing or classification, where explanatory variables {y*} are quantitatives and
varjables {27} are dummy variables.
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Finally, as explanatory subspace ImY in the variable space, proved .its
utility for independent varlables, we hope that a large scale use of corre-

sponding subspace Im'Y (or Im ‘@), in the Relational Model will prove the
same, but for statlstlcal units or mdlvxduals
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