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Abstract: Large datasets are increasingly widespread in many disciplines. The exponential growth of data requires the 

development of more data analysis methods in order to process information more efficiently. In order to better visualize the data, 

many methods such as Principal Component Analysis (PCA) and MultiDimensional Scaling (MDS) allow to extract a 

low-dimensional structure from high-dimensional data set. The proposed approach, called Topological Principal Component 

Analysis (TPCA), is a multidimensional descriptive method witch studies a homogeneous set of continuous variables defined on 

the same set of individuals. It is a topological method of data analysis that consists of comparing and classifying proximity 

measures from among some of the most widely used proximity measures for continuous data. Proximity measures play an 

important role in many areas of data analysis, the results strongly depend on the proximity measure chosen. So, among the many 

existing measures, which one is most useful? Are they all equivalent? How to identify the one that is most appropriate to analyze 

the correlation structure of a set of quantitative variables. TPCA proposes an appropriate adjacency matrix associated to an 

unknown proximity measure according to the data under consideration, then analyzes and visualizes, with graphic 

representations, the relationship structure of the variables relating to, the well known PCA problem. Its uses the concept of 

neighborhood graphs and compares a set of proximity measures for continuous data which can be more-or-less equivalent a 

topological equivalence criterion between two proximity measures is defined and statistically tested according to the topological 

correlation between the variables considered. An example on real data illustrates the proposed approach. 

Keywords: Proximity Measure, Neighborhood Graph, Adjacency Matrix, Topological Equivalence, Correlation Matrix, 

MDS Graphical Representation 

 

1. Introduction 

Choosing a proximity measure from among the many 

available measures greatly influences the results of any data 

analysis method, moreover, these measures are more-or-less 

equivalent according to the concept of the neighborhood 

graph structure used. 

A topological equivalence criterion is defined between 

proximity measures from the topological structure induced 

by each measure. 

Large datasets are increasingly common and are often 

difficult to interpret. Principal component analysis (PCA) 

[16, 10, 5, 18] is a technique for reducing the dimensionality 

of such datasets, increasing interpretability but at the same 

time minimizing information loss. It is an exploratory tool 

for continuous data. 

PCA is an adaptive technique for continuous data, 

variants of this technique have been developed and tailored 

to various different data types and structures. 

In order to suitably interpret the large datasets, methods 

are needed are required to drastically reduce their 

dimensionality in an interpretable way. Many techniques 

have been developed for this purpose, but PCA is one of the 

oldest and most widely used. PCA is statistically considered 

as a widely used multivariate method for dimension 

reduction and as a technique of representing data. It aims is 

to find common factors, the so–called principal components, 

in form of linear combinations of the variables under 

investigation. It allows to have an idea of the correlations 

structure of the set of variables, as well as possible 

similarities of behavior between individuals. 

In the context of artificial intelligence, we often compare 
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des situations représented by a set of objects, for this, we 

must choose and specify the proximity measure between 

objects. The study context, the data type and other factors 

can help us to choose the proximity measure that might be 

suitable. However, the number of possible measures can still 

quite large. 

Moreover, these measures which are still possible, are 

they all equivalent? Is there a measure more specific or 

more suited than another for the study considered? In 

information retrieval, the choose of proximity measure is an 

essential issue on which the results depend. 

The present study proposes a new framework for 

comparing proximity measures in order to identify those that 

are similar, thus, we will no longer need to try all measures. 

These comparisons are clarified by a proximity measure 

which evaluates the similarity or dissimilarity between two 

objects within a set. The proximity measure have 

mathematical properties and well specific axioms. 

The best measure is selected according to the correlation 

structure of the set of quantitative variables to synthesize, the 

aim is to establish a topological PCA. The results of TPCA 

are different according to the selected proximity measure. 

Several authors have studied the topological equivalence 

of proximity measures, in a general framework [4, 17, 13, 

24], in the context of the discriminant analysis [3] and the 

correspondence analysis [2, 1], but none in the context of 

PCA. So, in this paper, we show how to built the appropriate 

adjacency matrix, induced by an unknown proximity 

measure but which takes in to account the correlation 

structure of the variables that we want to describe 

topologically. 

In this article, we compare different proximity measures 

in an aim to synthesize the relationships of a set of 

continuous variables in the topological context. Comparison 

of these measures show that the results are different and 

depending on the proximity measure chosen. The rest of the 

paper is organized as follows. In section 2, we discuss 

topological equivalence between two proximity measures 

and show how to build an adjacency matrix associated with 

a proximity measure, how to compare and statistically test 

the degree of topological equivalence between proximity 

measures and how to select the best measure to describe 

topologically the structure of the correlations of the 

variables. Section 3 presents an illustrative example and 

surveys existing proximity measures on continuous data and 

presents a comparison between them. This comparison helps 

the researchers to take quick decision about which measure 

to use for considered data. A conclusion of this work is 

given in section 4. 

Table 8 in Appendix summarizes some classic proximity 

measures used for continuous data [23], we give on R
n
 the 

definition of 15 of them. 

We assume that we have at our disposal {x
k
; k=1, …, p} a 

set of p homogeneous quantitative variables measured on n 

individuals. The interest is to analyze the topological 

structure of all these variables. 

2. Topological Correlation 

The notion of topological equivalence between two 

proximity measures is based on the concept of the 

neighborhood graph. Two measures are said topologically 

equivalent if their graphs induced on the set of objects remain 

identical. Measuring the similarity between two proximity 

measures amounts to measuring the similarity of their 

neighborhood graphs. 

Consider a set E={x
1
, x

2
, …, x

k
, …, x

p
} of p objects in R

n
, 

associated with the p quantitative variables. 

Given a proximity measure noted u, we can define a 

neighborhood binary relationship on E × E noted Vu. Thus, 

we can build a neighborhood graph on a set of 

objects-variables, where the vertices are the variables and the 

edges are defined from the property of the neighborhood 

relationship. It is a binary symmetric matrix. 

Many graph definitions are possible to build this binary 

matrix. One can choose the Minimal Spanning Tree (MST) 

[11], the Gabriel Graph (GG) [15] or, as is the case here, the 

Relative Neighborhood Graph (RNG) [21]. 

So, given a proximity measure u, we can associated the 

adjacency matrix Vu of order p, where all pairs (x
k
, x

l
) of 

neighboring variables satisfy the following RNG expression: 

����� , ��� 	 
 1
0   �� ���� , ��� � max����� , ���, ���� , ����  ��� ,  �� , �� � �,  ��  �  ��  ��� ��  �  ��

� !"#$�%"  

 

Figure 1. RNG example with eight variables - Aadjacency matrix. 
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This means that if two variables x
k
 and xl which verify 

the RNG property are connected by an edge, the vertices x
k
 

and x
l
 are neighbors. 

Thus, for any proximity measure given, u, we can 

associate an adjacency matrix Vu, of binary and symmetrical 

order p. Figure 1 illustrates an example of RNG in R
2
 of a 

set of p=8 objects-variables. 

For example, for the first and four variables, Vu (x
1
, x

4
)=1, 

it means that on the geometrical plane, the hyper-Lunula 

(intersection between the two hyperspheres centered on the 

two variables x
1
 and x

4
) is empty. 

For a given neighborhood property (MST, GG or RNG), 

each measure u generates a topological structure on the 

objects in E which are totally described by the adjacency 

binary matrix Vu. In this paper, we chose to use the Relative 

Neighbors Graph (GNR). 

2.1. Comparison and Selection of Proximity Measures 

First we compare different proximity measures according 

to their topological similarity in order to regroup them and to 

better visualize their resemblances. 

To measure the topological equivalence between two 

proximity measures ui and uj, we propose to test if the 

associated adjacency matrices Vui and Vuj are different or not. 

The degree of topological equivalence between two 

proximity measures is measured by the following definition 

of concordance. The topological equivalence between two 

adjacency matrices satisfy the following expression: 

S (��&, ��') = ()* ∑  )�,( ∑  )�,( -�����, ��) 

 $� ℎ -����� , ��) = .10  �� ��&���, ��) = ��'���, ��)� ℎ"#$�%"  

Then, in our case, we want to compare these different 

proximity measures according to their topological 

equivalence in a context of correlation. So we define a 

criterion for measuring the deviation from the independence 

position. 

The data can arise from several different sampling 

frameworks, and the interpretation of the hypothesis of no 

association depends on the framework. The question of 

interest is whether there is correlation between the two 

variables. 

We construct the adjacency matrix denoted by Vu*, which 

corresponds to the correlation matrix. 

Thus, to examine the correlation structure between the 

variables, we examine the significance of their linear 

correlation coefficient. This adjacency matrix can be written 

as follows using the t-test of the linear correlation coefficient 

ρ of Bravais-Pearson. The adjacency matrix Vu* associated to 

reference measure u* satisfy the following expression: 

��∗��� , ��) = 
 1
0   �� 0 − 2�3�" = 45 6789  >  − 2�3�"; ≤  < ∀= = 1, 0, ∀3 = 1, 0� ℎ"#$�%"  

Where p-value is the significance test of the correlation 

coefficient for the two-sided test of the null and alternative 

hypotheses, H0: ρ(x
k
, x

l
)=0 vs. H1: ρ (x

k
, x

l
)≠0. 

The p-value is the evidence against a null hypothesis. 

The smaller the p-value, the stronger the evidence that you 

should reject the null hypothesis which means that there is 

no correlation between x
k
 and x

l
 variables in the 

population. 

Formula for the Student t-test for significance of 

correlation: t=√(n - 2) (1 - r
2
) with ν=n - 2 degrees of 

freedom (d.f.) and r=r (x
k
, x

l
) is the linear correlation 

coefficient observed between the variables x
k
 and x

l
. 

Let Tn-2 be a t-distributed random variable of Student with 

ν=n - 2 d.f. In this case, the null hypothesis is rejected with a 

p-value less or equal a chosen α significance level, for 

example α=5%. Using linear correlation test, if the p-value 

be very small, it means that there is very small opportunity 

that null hypothesis is correct, and consequently we can reject 

it. Statistical significance in statistics is achieved when a 

p-value is less than the significance level of α. The p-value is 

the probability of obtaining results which acknowledge that 

the null hypothesis is true. 

The robustness according to the α error risk chosen for the 

null hypothesis, no linear correlation, can be studied by 

setting a minimum threshold in order to analyze the 

sensitivity of the results. Certainly the numerical results will 

change, but probably not their interpretation. 

The binary and symmetric adjacency matrix build Vu*, is 

associated with an unknown proximity measure denoted u* 

and called a reference measure. Thus, with this reference 

proximity measure we can establish (Vui, Vu*), the 

topological equivalence between the two proximity measures 

ui and u*, by measuring the percentage of similarity between 

the adjacency matrix Vui and the reference adjacency matrix 

Vu*. 

In order to graphically describe the similarities between 

proximity measures, we can for example apply the notion of 

them scope [12], which is a methodological sequence of a 

clustering method on the results of a factorial method. In 

this case, a Principal Component Analysis (PCA) followed 

by a Hierarchical Ascendant Classification (HAC) were 

performed upon the 15 component dissimilarity matrix 

defined by: [D]ij=D (Vui, Vuj)=1 – S (Vui, Vuj) to partition 

them into homogeneous groups and to view their 

similarities. 

We can use any classic visualization techniques to achieve 

this. For example, we can build a dendrogram of hierarchical 

clustering of the proximity measures. We can also use 

multidimensional scaling or any other technique, such as 

Laplacian projection, to map the 15 proximity measures into 

a two dimensional space. 

Finally, in order to evaluate and determine the closest class 

of proximity measures to the reference measure u*, we project 

the latter as a supplementary element into the two data 

analysis methods, positioned by the dissimilarity vector with 

15 components [D]*I=1 – S (Vu*, Vui). 
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2.2. Statistical Comparisons Between Proximity Measures 

In this section, we use the Fisher's Exact Test [9] which 

is an alternative to the Chi-square test when the samples 

are small. The principle of this test is to determine if the 

configuration observed in the contingency table is an 

extreme situation compared to the possible situations 

taking into account the marginal distributions. Fisher's 

exact test is an exact statistical test used for the analysis of 

contingency tables. It is a test qualified as exact because 

the probabilities can be calculated exactly rather than 

relying on an approximation which becomes correct only 

asymptotically as for the chi-square test used in the 

contingency tables. 

It is not based on a test statistic whose law is known 

when n is large enough but it calculates, as its name 

suggests, the exact p-value directly. To test statistically the 

topological equivalence between two proximity measures, 

this non parametric test compares these measures based on 

their associated adjacency matrices. Two proximity 

measures are statistically in topological equivalence if the 

null hypothesis H0 of independence is rejected. 

The comparison between indices of proximity measures 

has also been studied by Demsar [7] and Schneider & 

Borlund [19, 20] from a statistical perspective. The authors 

proposed an approach that compares similarity matrices 

obtained by each proximity measure, using Mantel's test [14], 

in a pairwise manner. 

Fisher's exact test is the statistical test best suited to 

compare matched binary data, the Cohen's Kappa test [6] 

also but it is in general an asymptotic test. The Kendall or 

Spearman coefficient compares matched continuous data. It 

makes it possible in this context to measure the agreement 

or the concordance of the binary values of two adjacency 

matrices associated with two proximity measures. The 

Fisher's exact test between two adjacency matrices 

evaluates the topological equivalence between their 

proximity measures. 

Let Vui and Vuj be adjacency matrices associated with two 

proximity measures ui and uj. To compare the degree of 

topological equivalence between these two measures, we 

propose to test if the associated adjacency matrices are 

statistically different or not, using a non-parametric test of 

paired data. These binary and symmetric matrices of order p, 

are unfolded in two vector-matched components, consisting 

of p (p + 1)/2 values, the p diagonal values and the p (p - 1)/2 

values above or below the diagonal. 

The degree of topological equivalence between two 

proximity measures is evaluated from the Fisher's exact test, 

computed on the 2 × 2 contingency table formed by the two 

binary vectors of order p (p + 1)/2. 

We also test the topological equivalence between each 

proximity measure ui=1,15 and the reference measure u* by 

comparing the adjacency matrices Vui and Vu*. 

2.3. Graphical Representations - Variables & Individuals 

In order to represent graphically the possible 

topological links between the p quantitative variables, we 

use MultiDimensional Scaling (MDS) which makes it 

possible to find, for any distance matrix (similarity or 

dissimilarity) of size p × p, a set of p points identified by 

their Euclidean coordinates whose distance matrix is equal 

to or very close to the given distance matrix. 

We carry out the classical MDS [5], namely factorial 

analysis on similarity Vu* or dissimilarity Du*=U - Vu* 

table, where U=1p 
t
1p is the p×p matrix of 1s and 1p denotes 

the p indicator vector of 1s. 

The TPCA approach consist to perform the standardized 

PCA of the triple {Vu*; M; Dp}, where, Vu* is the adjacency 

matrix associated with the proximity measure u*, the most 

appropriate measure for the considered data, M=Ip is the 

identity matrix of order p and Dp=1/p Ip is the weighted 

diagonal matrix of variable weights. 

The TPCA can be performed from any adjacency matrix 

Vui associated with each of the 15 proximity measures ui 

considered. Aid for the interpretation of TPCA results are 

those of PCA. Graphical representations on factorial plans 

allow to visualize and identify the topological structure of the 

variables. As in PCA, for representations of variables, we 

consider the most significant variables on the axes, that is the 

variables highly correlated with factors, having a strong 

contribution and a good quality of representation, measured 

by the square cosine of the angle between main axes and 

initial axes. 

For representations of active individuals, these are 

projected as illustrative elements. The quality of 

representation of these individuals on the factorial axes is 

measured by their squared cosine. 

3. Illustrative Example and Empirical 

Results 

To illustrate the TPCA, we use Eurostat data [8] on 

government finance of the 28 European Union (EU) 

countries in 2017. We examine how key government finance 

statistics have developed in the EU-28. Specifically, it 

considers general government gross debt, deficit/surplus, 

total revenue and total expenditure. Simple statistics of the 

considered variables are displayed in Table 1. 

Table 1. Summary statistics of public finances. 

Variable N Mean Std. Dev.  Coef. Var. (%) Min Max 

Debt 28 68.04 36.5 53.70 8.7 176.1 

Deficit 28 -0.26 1.7 640.07 -3.1 3.5 

Revenues 28 42.58 6.7 15.63 26.0 53.8 

Expenditures 28 42.85 6.8 15.85 26.3 56.5 

In a metric and classical context, we simply have to apply a 

standardised PCA on the homogeneous set of the 4 

characteristics of the government finance of the EU-28. 

In a topological context, the main results of the proposed 

method are presented in the following tables and graphs, 

which allow us to visualize proximity measures close to each 

other and to select the one that best describes and synthesis, 
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the government finance of the EU-28. 

The objective here is to give a topological synthesis of the 

public finances of the EU countries in 2017. 

An HAC algorithm based on the Ward criterion [22], 

aggregation based on the criterion of the loss of minimal 

inertia, was used in order to characterize classes of 

proximity measure relative to their similarities. The 

reference measure u* is projected as a supplementary 

element. The dendrogram of Figure 2 represents the 

hierarchical tree of the 15 proximity measures considered. 

Table 2 describes the final composition of each class of 

proximity measures, the results of the chosen partition into 

three homogeneous classes, obtained from the cut of the 

hierarchical tree of Figure 2. 

 

Figure 2. Hierarchical tree of the proximity measures. 

Table 2. Clusters composition - Assignment of the reference measure. 

Cluster Frequency Cluster 1 11 Cluster 2, 1 Cluster 3, 3 

Proximity measure 
Euclidean, Manhattan, Minkovski-3, Cosine, Pearson, 

Chord, Doverlap, Gower, Shape, Size, Lpower 
Tchebytchev 

Canberra, Normalized Euclidean, Weighted 

Euclidean 

Reference   u* 

Table 3. Similarities and Fisher’s Exact Test. 

ui uj S (ui, uj) p-value 

Cluster 1 Cluster 1 1.000 0.0083** 

Cluster 1 Cluster 2 0.750 0.1833 

Cluster 1 Cluster 3 0.750 0.1833 

Cluster 2 Cluster 2 1.000 0.0083** 

Cluster 2 Cluster 3 0.500 1.0000 

Cluster 3 Cluster 3 1.000 0.0083** 

u* Cluster 1 0.750 0.1833 

u* Cluster 2 0.625 0.5000 

u* Cluster 3 0.875 0.0333* 

Table 4. 2 × 2 Contingency Table - Similarity - Fisher's Exact Test. 

Cluster 2 Cluster 1 Euclidean Reference Cluster 1 Euclidean 

Tchebychev Vu1=0 Vu1=1 Measure Vu1=0 Vu1=1 

Vu2=0 2 1 Vu*=0 3 1 

Vu2=1 1 6 Vu*=0 0 6 

S (Vu2, Vu1)=75%; p-value=0.183 S (Vu*, Vu1)=75%; p-value=0.183 

 

Cluster 3 Cluster 2 Tchebytchev Reference Cluster 2 Tchebytchev 

Canberra Vu1=0 Vu1=1 Measure Vu1=0 Vu1=1 

Vu2=0 1 2 Vu*=0 2 2 

Vu2=1 2 5 Vu*=1 1 5 

S (Vu3, Vu2)=50%; p-value=1.000 S (Vu*, Vu2)=62.50%; p-value=0.500 

 

Cluster 1 Cluster 3 Canberra Reference Cluster 3 Canberra 

Euclidean Vu1=0 Vu1=1 Measure Vu1=0 Vu1=1 

Vu2=0 2 1 Vu*=0 3 1 

Vu2=1 1 6 Vu*=1 0 6 

S (Vu1, Vu3)=75%; p-value=0.183 S (Vu*, Vu3)=87.50%; p-value=0.033* 

Significance level α; **α ≤ 1%; *α ∈ [1%; 5%] 
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Moreover, in view of the results in Table 2, the reference 

measure u* is closer to the third class consisting of Normalized 

Euclidean, Canberra and Weighted Euclidean measures for 

which there is a strong topological association between the 

variables of government finance of EU-28 among the 15 

proximity measures considered. 

It was shown in [24], by means of a series of experiments, 

that the choice of proximity measure has an impact on the 

results of a supervised or unsupervised classification. 

In a topological framework, Table 3 summarizes all the 

results of Table 8 given in the Appendix, the similarities and 

Fisher's Exact p-values between all the C
2

15=105 pairs of 

proximity measures formed with the 15 measures considered 

and the 15 pairs formed with the unknown reference measure 

u*. The values below the diagonal correspond to the 

similarities S (Vui, Vuj) and the values above the diagonal are 

the Fisher's Exact test p-values. 

The similarities in pairs between the 15 proximity measures 

differ somewhat: some are closer than others, some measures 

are in perfect topological equivalence S (Vui, Vuj)=1 with a 

significant Fisher's exact test p-value < 5%; these are therefore 

identical for the data considered, as is the case with the 

measures in each cluster of the partition presented in Table 2. 

The Table 4 illustrates the contingency tables 2 × 2 between 

the measures of each cluster: Euclidean, Tchebytchev, 

Canberra and reference measure u* for the calculation of 

Fisher's exact test. 

Only the topological equivalence between the reference 

proximity measure and the Canberra proximity measure is 

significant, p-value=0.0034 < α=5%, the null hypothesis H0 

of independence is rejected. 

Table 5. Pearson correlation matrix (p-value). 

Variable Debt Deficit Revenues Expenditures 

Debt 1.000    

Deficit 
-0.340 1.000   

(0.08)    

Revenues 
0.307 0.039 1.000  

(0.11) (0.843)   

Expenditures 
0.385 -0.209 0.969 1.000 

(0.04*) (0.255) (0.001**)  

Significance level α; **α ≤ 1%; *α ∈ [1%; 5%] 

The adjacency matrix Vu* associated to the adapted 

proximity measure u* to the considered data, is build from the 

correlations matrix Table 5. Figure 5 shows on the main first 

TPCA plane, the topological correlation between the 

Government finance variables. 

 

Figure 3. TPCA - Adjacency matrix – The public finance variables on the first principal plane. 
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Figure 4. TPCA - The EU-28 countries on the first principal plane. 

 

Figure 5. PCA – The public finance variables on the first principal plane. 
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The adjacency matrix Vu* associated to the adapted 

proximity measure u* to the considered data, is build from the 

correlation matrix Table 5. Figure 5 shows on the main first 

TPCA plane, the topological correlation between the 

Government finance variables. 

The corresponding representation for individuals is given in 

Figure 4. It is thus possible to suggest which are the variables - 

government finance - responsible for the proximities between 

the individuals, the 28 EU countries. 

The main numerical and graphical results of the proposed 

TPCA are given in the following Tables and Figures, and are 

compared to those of the classical PCA. 

Figure 5 presents, for comparison on the first factorial plane, 

the correlations between principal components - Factors and 

the original variables. We can see that these graphical 

representations of the variables are slightly different. 

Effectively, the percentage of inertia explained on the first 

principal plane of the Topological PCA is greater than that of 

classical PCA and the significant correlations variables-factors 

are also different. 

Table 6 shows that the two first factors of TPCA explain 

68.96% and 25.00%, respectively, they account for 93.96% of 

the total variation in the dataset, while the two first factors of 

classical PCA sum up that 84.88%. 

Thus, the first two factors provide an adequate summary of the 

data, i.e. of government finance of EU-28 countries, we restrict 

the comparison of the graphical representations to the first 

factorial plane. 

 

Figure 6. PCA - The EU-28 countries on the first principal plane. 

Table 6. TPCA and PCA eigenvalues and correlations Variables & Factors. 

TPCA Eigenvalue Proportion Cumulative Correlation Factors 

 2.758 68.96% 68.96% Variables F1 F2 

 1.000 25.00% 93.96% Debt 0.645 0.707 

 0.242 6.04% 100.00% Deficit 0.982 0.000 

 0.000 0.00% 100.00% Revenues 0.645 -0.707 

 4 100.00% 100.00% Expenditures 0.982 0.000 

 

PCA Eigenvalue Proportion Cumulative Correlation Factors 

 2.224 55.61% 55.61% Variables F1 F2 

 1.171 29.27% 84.88% Debt -0.615 0.497 

 0.605 15.12% 100.00% Deficit 0.307 -0.845 

 0.000 0.00% 100.00% Revenues -0.907 -0.414 

 4 100.00% 100.00% Expenditures -0.964 -0.196 
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The correlation tables show that the original variables are 

strongly correlated with the factors, those that contribute the 

most to the achievement of this principal component. 

While the first PCA factor (55.61%) is strongly correlated 

with three of the original variables, expenditures, revenues 

and debt, the first TPCA factor (68.96%) opposes these three 

variables to the deficit. As for the second PCA (29.27%) and 

TPCA (25.00%) factors, they oppose the debt to revenues. 

The representations of the countries presented in Figures 4 

and 6 are of course slightly different, indeed, for example, for 

France which contributes to the realization of the first TPCA 

axis, it is characterized by high Debts, high Expenditures, high 

Revenues and a low Deficit. France also contributes on the 

first PCA axis, it’s characterized by high Debts, high 

Expenditures and high Revenues, but the Deficit does not 

characterize the first factorial axis of the PCA. 

We can represent the topological analysis of each of the 15 

proximity measures considered, for example see the Euclidean 

TPCA in Figure 7. One can moreover give Figure 8, the 

graphical representation associated with a perfect no 

correlation between variables, from the identity adjacency 

matrix. 

 

Figure 7. Euclidean TPCA - The public finance variables on the first principal plane. 

 

Figure 8. Identity TPCA - The public finance variables on the first principal plane. 
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4. Conclusion 

This research work proposes a new approach that allows to 

synthesize and describe the correlation structure of a set of 

quantitative variables in a topological context. Like PCA, the 

proposed TPCA is a multidimensional topological exploratory 

method that can be useful for dimension reduction and 

information redundancy in a data set, it enriches the 

conventional quantitative data analysis methods. Future work 

involves extending this topological approach in three 

directions, to synthesize the relations existing between a set of 

a mixture of qualitative and quantitative variables, between 

two sets of continuous variables in the context of canonical 

analysis and also between several multidimensional data 

tables in the context of evolutionary data analysis. 

Appendix 

Table 7. Similarities & Fisher’s Exact Test p-values. 

 
Euclidean Manhattan Minkowski-3 Dissimilarity Correlation Squared Chord Doverlap Gower 

u* measure 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 

Euclidean 1 0.008 0.008 0.008 0.008 0.008 0.008 0.008 

Manhattan 1 1 0.008 0.008 0.008 0.008 0.008 0.008 

Minkowski-3 1 1 1 0.008 0.008 0.008 0.008 0.008 

Dissimilarity 1 1 1 1 0.008 0.008 0.008 0.008 

Correlation 1 1 1 1 1 0.008 0.008 0.008 

Squared Chord 1 1 1 1 1 1 0.008 0.008 

Doverlap 1 1 1 1 1 1 1 0.008 

Gower 1 1 1 1 1 1 1 1 

Shape 1 1 1 1 1 1 1 1 

Size 1 1 1 1 1 1 1 1 

Lpower 1 1 1 1 1 1 1 1 

Tchebytchev 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 

N. Euclidean 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 

Canberra 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 

W. Euclidean 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 

u* measure 0.875 0.875 0.875 0.625 0.875 0.875 0.875 0.875 

Table 7. Continued. 

 
Shape Size Lpower Tchebytchev N. Euclidean Canberra W. Euclidean 

u* measure 0.033 0.033 0.033 0.5 0.033 0.033 0.033 

Euclidean 0.008 0.008 0.008 0.183 0.183 0.183 0.183 

Manhattan 0.008 0.008 0.008 0.183 0.183 0.183 0.183 

Minkowski-3 0.008 0.008 0.008 0.183 0.183 0.183 0.183 

Dissimilarity 0.008 0.008 0.008 0.183 0.183 0.183 0.183 

Correlation 0.008 0.008 0.008 0.183 0.183 0.183 0.183 

Squared Chord 0.008 0.008 0.008 0.183 0.183 0.183 0.183 

Doverlap 0.008 0.008 0.008 0.183 0.183 0.183 0.183 

Gower 0.008 0.008 0.008 0.183 0.183 0.183 0.183 

Shape 1 0.008 0.008 0.183 0.183 0.183 0.183 

Size 1 1 0.008 0.183 0.183 0.183 0.183 

Lpower 1 1 1 0.183 0.183 0.183 0.183 

Tchebytchev 0.75 0.75 0.75 1 1 1 1 

N. Euclidean 0.75 0.75 0.75 0.5 1 0.008 0.008 

Canberra 0.75 0.75 0.75 0.5 1 1 0.008 

W. Euclidean 0.75 0.75 0.75 0.5 1 1 1 

u* measure 0.875 0.875 0.875 0.875 0.875 0.875 0.875 

Similarity: S (Tchebytchev; Euclidean)=75%. 

Fisher’s Exact Test: p-value (Euclidean; Tchebytchev)=0.183 > α=5%: not significant. 
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Table 8. Some proximity measures for continuous data. 

Measure Formula: Distance - Dissimilarity 

Euclidean �>�?�&@AB7��, C) = DE F�' − C'G9)
',(  

Manhattan �HB7IBJJB7��, C) = E K�' − C'K)
',(  

Minkowski-ν �H&7�LMN�&��, C) = OE K�' −  C'KP)
',( Q(/P

 

Cosine Dissimilarity 
�SLN&7A��, C) = 1 − ∑ �'  C')',(

T∑ �' 9)',( T∑ C' 9 )',(
 

Pearson Correlation   
Squared Chord �SIL�@��, C) = E �U�' − UC')9)

',(  

Doverlap measure �VLWA��B)��, C) = max OE �'
)
',( , E C'

)
',(  Q − E min ��'

)
',( , C'   

Gower �ZLMA���, C) = 10 E K�'  − C'K)
',(  

Shape Distance �[\]^_�x, y) = DE  5F�' − �a'  G − FC' −  Cb'  G; 9)
',(  

Size Distance �c&dA��, C) = eE ��' − C'))
',( e 

Lpower �f)LMA���, C) = E K�' − C'KP)
',(  

Tchebytchev �g?IAhi?IAW��, C) = j��( k'k)  K�'  − C'K 
Normalized Euclidean �lmnopqr_]s�x, y) = DE 1t9  5F�' −  �a'  G − FC' − Cb'  G; 9)

',(  

Canberra �SB7hA��B��, C) = E K�' − C'KK�'K + KC'K
)
',(  

Weighted Euclidean �vmnopqr_]s�x, y) = DE <'F�' −  C'G9)
',(  

Where, p is the dimension of space, x=(xj)j=1,…, p and y=(yj)_j=1, …, p two points in Rp, 

xj the mean, σj the Standard deviation, αj=1\σj
2 and ν > 0. 
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