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Abstract. In many application domains, the choice of a proximity measure di-
rectly affects the resulting data mining methods in the clustering, comparison or
structuring of a set of objects. Generally, the user is obliged to choose one proxim-
ity measure among many existing ones. According to the notion of equivalence,
like the one based on pre-ordering, some of the proximity measures are more or
less equivalent, which means that they produce, more or less, the same results. In
this paper, we introduce a new approach to comparing proximity measures. This
approach is based on topological equivalence which exploits the concept of lo-
cal neighbors. It defines equivalence between two proximity measures as having
the same neighborhood structure on the objects. We illustrate our approach upon
thirty-six proximity measures used with continuous and binary attributes.

1 Introduction

In order to understand and act upon situations that are represented by a set of objects,
we must be able to compare them. In natural life, this comparison is performed by
the brain subconsciously. In the context of artificial intelligence, however, we should
describe how the machine might perform this comparison. In this context, one of the
basic elements, that must be specified, is the proximity measure between objects.

A proximity measure can be defined in different ways, and depending on the as-
sumptions and axioms that are sought, measures with diverse and varied properties can
be created. The notion of proximity covers several meanings such as similarity, resem-
blance and dissimilarity. In the literature, we can find many examples of measures that
differ from each other depending the type of data used (binary, quantitative, qualitative,
fuzzy...).

Certainly, application context, prior knowledge, data type and many other factors
can help in the identification of the appropriate measure. For instance, if the objects to
be compared are described by boolean vectors, we can restrict our comparisons to a
class of measures specifically devoted to this data type. However, the number of candi-
date measures might remain quite large. In that case, how shall we proceed to identify
the measure that we should use? If all candidate measures are equivalent, is it sufficient
to choose randomly? In most cases, this is not true.



Choosing a given proximity measure is an important issue in many practical appli-
cations such as information retrieval. For instance, when we submit a query to a search
engine, it displays a list of candidate answers ranked according to the degree of resem-
blance to the query. This degree of resemblance can therefore be seen as a measure
of proximity between the query and the available objects in the database. With this in
mind, one must ask if the way that we measure the proximity between objects affects the
result of a query. If we know that the answer is yes, how can we decide which measure
is more appropriate? In general, answering this question is very hard. However, if we
could just provide a framework that allows us to compare proximity measures between
each other, it would be easier to approach this goal.

The present work aims to propose a new framework for comparing proximity mea-
sures. We leave aside the issue of the appropriateness of the proximity measure which
is still an open question, and has been studied in the literature for many years.

Comparing proximity measures can be analyzed from three angles:

– As in the works of [4], [7] in terms of common properties between proximity mea-
sures,

– As in the works of [27], [2] where one can expressed as a function of the other,
– As in [5] where the comparison is carried out by looking at the results to compare

if they are identical or not.

Nevertheless, these three approaches can be unified according to the fact that they
allow categorization of proximity measures. Thus, the user can identify measures that
are equivalent to those that are less than [8], [3].

The procedure of comparing two proximity measures consists of comparing the val-
ues of induced proximity matrices [2], [3] and, if necessary, establishing a functional
and explicit link when the measures are equivalent. For instance, to compare two prox-
imity measures, [7] focuses on the preorders induced by the two proximity measures,
and assesses their degree of similarity by the concordance between the induced pre-
orders of the set of quadruplets of the objects. Other authors, such as [20], evaluate the
equivalence between two measures by a statistical test between the proximity matrices.
The common idea of these works is based on a principal which says that two proximity
measures are closer if the preorder induced on pairs of objects does not change. Later,
we will give further clearer definitions.

The numerical indicators derived from these cross-comparisons are used to catego-
rize proximity measures. The aim of this categorization is to detect measures which are
identical to the others and, as a final step, to group them into classes according to their
similarities.

In this paper, we propose another approach for assessing the similarities between
proximity measures. This will lead to a new way of comparing proximity measures. We
introduce this approach by using a neighborhood structure of objects. This neighbor-
hood structure is what we refer to as the topology induced by the proximity measure. If
the neighborhood structure between objects, induced by a proximity measure ui, does
not change relative to another proximity measure u j, this means that the local topology



between objects is not changed and by extrapolation, and the objects remain similar. In
this case, we may say that the proximity measures ui and u j are in topological equiva-
lence. We can thus calculate a value of topological equivalence between pairs of prox-
imity measures and then visualize the closeness between measures. This visualization
can be achieved by a clustering algorithm.

We will define this new approach and will show the principal links identified be-
tween our approach and an approach based upon pre-ordonnance. So far, we did not
find any publication that deals the problem in the same way that we do.

The present paper is organized as follows. In section 2, we recall the definition and
some properties of proximity measures. In section 3, we will describe more precisely
the theoretical framework and we recall the basic definitions for the approach based on
induced pre-ordonnance. We will introduce our approach of topological equivalence in
section 4. In section 5, we will provide some results of the comparison between the two
approaches, and will try to highlight possible links between them. Further work and new
lines of inquiry provided by our approach, will be detailed in the conclusion. We will
highlight some remarks on how this work could be extended to all kind of proximity
measures, no matter the representation space: binary [2], [7], [26], [8], fuzzy [28], [3],
or symbolic, [12], [11].

2 Proximity measures

Consider a sample of n individuals x,y, . . . in a space of p dimensions. Individuals are
described by continuous variables: x = (x1, . . . ,xp). A proximity measure u between
two individuals points x and y of Rp is defined as follows:

u : Rp×Rp 7−→ R
(x,y) 7−→ u(x,y)

with the following properties, ∀(x,y) ∈ Rp×Rp:
P1: u(x,y) = u(y,x).
P2: u(x,x) ≤ u(x,y) ; P2’: u(x,x) ≥ u(x,y).
P3: ∃α ∈ R u(x,x) = α.

We can also define δ : δ (x,y) = u(x,y)−α a proximity measure that satisfies the
following properties, ∀(x,y) ∈ Rp×Rp:

T1: δ (x,y)≥ 0.
T2: δ (x,x) = 0.
T3: δ (x,x)≤ δ (x,y).

A proximity measure that verifies properties T1, T2 and T3 is a dissimilarity mea-
sure. We can also cite other properties such as:

T4: δ (x,y) = 0⇒∀z ∈ Rp δ (x,z) = δ (y,z).
T5: δ (x,y) = 0⇒ x = y.
T6: δ (x,y)≤ δ (x,z)+δ (z,y).
T7: δ (x,y)≤max(δ (x,z),δ (z,y)).
T8: δ (x,y)+δ (z, t)≤max(δ (x,z)+δ (y, t),δ (x, t)+δ (y,z)).



A dissimilarity measure which satisfies the properties T5 and T6 is a distance. As
shown in [1] some relations between these inequalities:

T 7(Ultrametric)⇒ T 6(Triangular)⇐ T 8(Buneman)

Table 1. Some proximity measures.

Measure Formula

Euclidean uE(x,y) =
√

∑
p
j=1(x j− y j)2

Mahalanobis uMah(x,y) =
√

(x− y)t ∑
−1(x− y)

Manhattan (City-block) uMan(x,y) = ∑
p
j=1 |x j− y j|

Minkowski uMinγ
(x,y) = (∑

p
j=1 |x j− y j|γ )

1
γ

Tchebytchev uT ch(x,y) = max1≤ j≤p |x j− y j|
Cosine Dissimilarity uCos(x,y) = 1− <x,y>

‖x‖‖y‖

Canberra uCan(x,y) = ∑
p
j=1

|x j−y j |
|x j |+|y j |

Squared Chord uSC(x,y) = ∑
p
j=1(
√x j−

√y j)
2

Weighted Euclidean uWE(x,y) =
√

∑
p
j=1 α j(x j− y j)2

Chi-square uχ2(x,y) = ∑
p
j=1

(x j−m j)
2

m j

Jeffrey Divergence uJD(x,y) = ∑
p
j=1(x j log x j

m j
+ y j log y j

m j
)

Histogram Intersection uHI(x,y) = 1− ∑
p
j=1(min(x j ,y j))

∑
p
k=1 y j

Pearson’s Correlation uρ (x,y) = 1−|ρ(x,y)|

Normalized Euclidean uNE(x,y) =
√

∑
p
j=1

(x j−y j)2

σ 2
j

Where, p is the dimension of space, x = (x j) j=1,...,p and y = (y j) j=1,...,p two points in Rp,
(α j) j=1,...,p ≥ 0, ∑

−1 the inverse of the variance and covariance matrix, σ2
j the variance, γ > 0,

m j =
x j+y j

2 and ρ(x,y) denotes the linear correlation coefficient of Bravais-Pearson.

In order to illustrate and compare the two approaches, we consider a relatively sim-
ple data, Iris dataset from the UCI-repository [24]. All attributes are continuous and
they are normally distributed. We give, in Table 1, 14 conventional proximity measures
defined on Rp.

For binary data, Table 2 gives the definition of 22 classic proximity measures in this
context, that we will study in the following. We consider also relatively simple data,
Zoo dataset from the UCI-repository [24].



Table 2. Some proximity measures for binary data.

Measure Type 1 Similarity Dissimilarity

Jaccard (1900) s1 =
a

a+b+c u1 = 1− s1
Dice (1945), Czekanowski (1913) s2 =

2a
2a+b+c u2 = 1− s2

Kulczynski s3 =
1
2 (

a
a+b +

a
a+c ) u3 = 1− s3

Driver and Kroeber, Ochiai (1957) s4 =
a√

(a+b)(a+c)
u4 = 1− s4

Sokal and Sneath s5 =
a

a+2(b+c) u5 = 1− s5

Braun-Blanquet (1932) s6 =
a

max(a+b,a+c) u6 = 1− s6

Simpson (1943) s7 =
a

min(a+b,a+c) u7 = 1− s7

Measure Type 2

Kendall, Sokal-Michener (1958) s8 =
a+d

a+b+c+d u8 = 1− s8
Russel and Rao (1940) s9 =

a
a+b+c+d u9 = 1− s9

Rogers and Tanimoto (1960) s10 =
a+d

a+2(b+c)+d u10 = 1− s10

Pearson φ s11 =
ad−bc√

(a+b)(a+c)(d+b)(d+c)
u11 =

1−s11
2

Hamann (1961) s12 =
a+d−b−c
a+b+c+d u12 =

1−s12
2

bc u13 =
4bc

(a+b+c+d)2

Sokal and Sneath (1963), un5 s14 =
ad√

(a+b)(a+c)(d+b)(d+c)
u14 = 1− s14

Michael (1920) s15 =
4(ad−bc)

(a+d)2+(b+c)2 u15 =
1−s15

2

Baroni-Urbani and Buser (1976) s16 =
a+
√

ad
a+b+c+

√
ad

u16 = 1− s16

Yule Q (1927) s17 =
ad−bc
ad+bc u17 =

1−s17
2

Yule Y (1912) s18 =
√

ad−
√

bc√
ad+
√

bc
u18 =

1−s18
2

Sokal and Sneath (1963),un4 s19 =
1
4 (

a
a+b +

a
a+c +

d
d+b +

d
d+c ) u19 = 1− s19

Sokal and Sneath (1963), un3 u20 =
b+c
a+d

Gower & Legendre (1986) s21 =
a+d

a+ (b+c)
2 +d

u21 = 1− s21

Hamming distance u22 = ∑
p
j=1(x j− y j)

2

Where, a = |X ∩Y | is the number of attributes common to both points x and y, b = |X −Y | is
the number of attributes present in x but not in y, c = |Y −X | is the number of attributes present
in y but not in x and d = |X ∩Y | is the number of attributes in neither x or y. X = { j/x j = 1}
and Y = { j/y j = 1} are the sets of attributes present in data point x and y respectively, and |.| the
cardinality of a set.

3 Preorder equivalence

It is easy to see that on the same data set, two proximity measures, ui and u j generally
lead to different proximity matrices. Can we say that these two proximity measures are
different? Articles have been devoted to this issue. We can find a proposal in [7] which
says that two proximity measures ui and u j are equivalent if the preorder induced by
each of the measures on all pairs of objects are identical. Hence the following definition.



Definition 1. Equivalence in preordonnance: let n objects x,y,z... of Rp and any two
proximity measures ui and u j on these objects. If for any quadruple (x,y,z, t), we have:
ui(x,y)≤ ui(z, t)⇒ u j(x,y)≤ u j(z, t) then, the two measures ui and u j are considered
equivalent.

This definition was subsequently reproduced in many papers such as [2], [3], [8]
and [19]. This definition leads to an interesting theorem which is demonstrated in [2].

Theorem 1. Equivalence in preordonnance: let two proximity measures ui and u j, if
there is a function f strictly monotone such that for every pair objects (x,y) we have:
ui(x,y) = f (u j(x,y)), then ui and u j induce identical preorders and therefore they are
equivalent: ui ≡ u j.

The converse is also true, ie, two proximity measures that depend of each other
induce the same preorder and are, therefore, equivalent.

To compare proximity measures, former work used a concordance index between
preorders induced as a proximity measure between two measures ui and u j :

S(ui,u j) =
1
n4 ∑x ∑y ∑z ∑t δi j(x,y,z, t)

where δi j(x,y,z, t) =
{1 if [ui(x,y)−ui(z, t)]× [u j(x,y)−u j(z, t)]> 0

or ui(x,y) = ui(z, t) and u j(x,y) = u j(z, t)
0 otherwise

S is the measure of similarity which varies in the range [0,1]. Hence, for two prox-
imity measures ui and u j, a value of 1 means that the preoder induced by the two prox-
imity measures is the same and therefore the two proximity matrices of ui and u j are
equivalent.

With this similarity measure, we can compare proximity measures from their asso-
ciated proximity matrices. The results of the comparison pair of proximity measures are
given in Tables 3 and 4.

The comparison between indices of proximity has also been studied by [19], [20]
from a statistical perspective. The authors propose an empirical approach that aims to
compare proximity matrices obtained by each proximity measure on the pairs of objects.
Then, they propose to test whether or not the matrices are statistically different using
the Mantel test [13].

4 Topological equivalence

Topological equivalence is in fact based on the concept of a topological graph which
uses a neighborhood graph. The basic idea is quite simple: two proximity measures
are equivalent if the topological graph induced on the set of objects is the same. For
evaluating the resemblance between proximity measures, we compare neighborhood
graphs and quantify their similarity.

First, we will define precisely what a topological graph is, and describe how to build
it. Then, we propose a proximity measure between topological graphs used to compare
proximity measures.



Table 3. Continuous data - Preordonnance similarities: S(ui,u j)

S uE uMah uMan uMinγ
uT ch uCos uCan uSC uWE uχ2 uJD uHI uρ uNE

uE 1 .776 .973 .988 .967 .869 .890 .942 1 .947 .945 .926 .863 .947
uMah 1 .773 .774 .752 .701 .707 .737 .776 .739 .738 .742 .703 .791
uMan 1 .964 .940 .855 .882 .930 .973 .933 .932 .924 .848 .945
uMinγ

1 .967 .871 .892 .946 .988 .950 .949 .925 .866 .941
uT ch 1 .865 .887 .940 .957 .942 .942 .914 .860 .916
uCos 1 .893 .898 .869 .899 .899 .830 .957 .867
uCan 1 .943 .890 .940 .942 .874 .868 .884
uSC 1 .942 .989 1 .913 .884 .918
uWE 1 .947 .945 .926 .863 .947
uχ2 1 1 .912 .885 .922
uJD 1 .914 .884 .920
uHI 1 .825 .892
uρ 1 .859

uNE 1

Table 4. Binary data - Preordonnance similarities: S(ui,u j)

S u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15 u16 u17 u18 u19 u20 u21 u22

u1 1
u2 1 1
u3 .964 .964 1
u4 .975 .975 .984 1
u5 1 1 .964 .975 1
u6 .923 .922 .899 .910 .922 1
u7 .831 .831 .866 .852 .831 .766 1
u8 .855 .855 .865 .855 .855 .787 .816 1
u9 .852 .852 .821 .833 .852 .893 .759 .711 1
u10 .855 .855 .865 .855 .855 .787 .816 1 .711 1
u11 .899 .899 .933 .920 .899 .838 .872 .917 .756 .917 1
u12 .855 .855 .865 .855 .855 .786 .816 1 .711 1 .917 1
u13 .779 .779 .813 .799 .779 .717 .860 .869 .646 .869 .878 .869 1
u14 .932 .932 .963 .951 .932 .870 .867 .899 .788 .899 .967 .899 .845 1
u15 .899 .899 .931 .921 .899 .838 .864 .908 .764 .908 .981 .908 .869 .962 1
u16 .972 .972 .965 .970 .972 .901 .845 .883 .827 .883 .927 .883 .806 .959 .923 1
u17 .857 .857 .891 .877 .857 .795 .921 .876 .723 .876 .947 .876 .920 .924 .930 .884 1
u18 .857 .857 .891 .877 .857 .795 .922 .876 .724 .876 .947 .876 .920 .924 .930 .884 1 1
u19 .899 .899 .933 .919 .899 .837 .873 .916 .755 .916 1 .916 .877 .967 .980 .927 .947 .947 1
u20 .855 .855 .865 .855 .855 .787 .816 1 .711 1 .917 1 .869 .899 .908 .883 .876 .876 .916 1
u21 .855 .855 .865 .855 .855 .787 .816 1 .711 1 .917 1 .869 .899 .908 .883 .876 .876 .916 1 1
u22 .855 .855 .865 .855 .855 .787 .816 1 .711 1 .917 1 .869 .899 .908 .883 .876 .876 .916 1 1 1

4.1 Topological graph

Consider a set E = {x,y,z, . . .} of n = |E| objects in Rp, such that x,y,z, . . . is a set of
points of Rp. We can, by using a proximity measure u, define a neighborhood relation-
ship Vu to be a binary relation on E×E. There are many possibilities for building this
neighborhood binary relation.



For example, we can built the Minimal Spanning Tree (MST) on (E×E) and define,
for two objects x and y, the property of the neighborhood according to minimal spanning
tree [6], if the objects are directly connected by an edge. In this case, Vu(x,y) = 1
otherwise Vu(x,y) = 0. So, Vu forms the adjacency matrix associated with the MST
graph, consisting of 0 and 1. Figure 1 shows a result in R2.



Vu . . . x y z t u . . .
. . . . . . . . . . . . . . . . . . . . . . . .
x . . . 1 1 0 0 0 . . .
y . . . 1 1 1 1 0 . . .
z . . . 0 1 1 0 1 . . .
t . . . 0 1 0 1 0 . . .
u . . . 0 0 1 0 1 . . .

. . . . . . . . . . . . . . . . . . . . . . . .


Fig. 1. MST example for a set of points in R2 and the associated adjacency matrix.

Alternatively we can use the Relative Neighbohood Graph (RNG), [23], [16], in
which all pairs of neighbour points (x,y) satisfy the following property:

u(x,y)≤max(u(x,z),u(y,z)) ; ∀z 6= x, 6= y then, Vu(x,y) = 1 otherwise Vu(x,y) = 0.

Which means geometrically that the hyper-lunula (the intersection of the two hy-
perspheres centered on two points) is empty. Figure 2 shows a result in R2. In this case,

u(x,y) = uE(x,y) =
√
(∑

p
i=1(xi− yi)2) is the Euclidean distance.



Vu . . . x y z t u . . .
. . . . . . . . . . . . . . . . . . . . . . . .
x . . . 1 1 0 0 0 . . .
y . . . 1 1 1 1 0 . . .
z . . . 0 1 1 0 1 . . .
t . . . 0 1 0 1 0 . . .
u . . . 0 0 1 0 1 . . .

. . . . . . . . . . . . . . . . . . . . . . . .


Fig. 2. RNG example for a set of points in R2 and the associated adjacency matrix.

Similarly, we can use the Gabriel Graph (GG), [15], which all the pairs of points
satisfy: u(x,y)≤ min(

√
u2(x,z)+u2(y,z)) ; ∀z 6= x, 6= y.

Geometrically, the diameter of the hypersphere u(x,y) is empty. Figure 3 shows an
example in R2.

For a given neighborhood property (MST, RNG, GG), each measure u generates a
topological structure on the objects in E which are totally described by the adjacency
matrix Vu.





Vu . . . x y z t u . . .
. . . . . . . . . . . . . . . . . . . . . . . .
x . . . 1 1 0 1 0 . . .
y . . . 1 1 1 1 0 . . .
z . . . 0 1 1 1 1 . . .
t . . . 1 1 1 1 0 . . .
u . . . 0 0 1 0 1 . . .

. . . . . . . . . . . . . . . . . . . . . . . .


Fig. 3. GG example for a set of points in R2 and the associated adjacency matrix.

4.2 Similarity between proximity measures

Consider two proximity measures ui and u j taken among those we listed in Table 1 or
in Table 2. Dui(E×E) and Du j(E×E) are the associated matrix of distances.

For a given neighborhood property, each of these two distances generates a topolog-
ical structure on the objects in E. A topological structure is described by its adjacency
matrix.

Note that Vui and Vu j are the two adjacency matrices associated with two topological
structures. To measure the degree of similarity between graphs, just count the number of
discordances between the two adjacency matrices. The matrix is symmetric, therefore
we can compute this value by:

S(Vui ,Vu j) =
1
n2 ∑x ∑y δi j(x,y)

where δi j(x,y) =
{1 if Vui(x,y) =Vu j(x,y)

0 otherwise

S is the measure of similarity which varies in the range [0,1]. A value of 1 means
that the two adjacency matrices are identical and therefore the topological structure in-
duced by the two proximity measures is the same, and therefore the proximity measures
considered are then equivalent. A value of 0 means that the topology has changed com-
pletely, i.e., there are no pairs of neighbors in the topological structure induced by both
proximity measures, only neighbors induced in the topological structure by the measure
or the other. S is also interpreted as the percentage of agreement between adjacency ta-
bles.

The similarity values between the 14 proximity measures for continuous data and
the 22 proximity measures for binary data are given in Tables 5 and 6.

5 Relationship between topological and pre-ordonnance
equivalences

5.1 Theoretical results

Like for pre-ordonnance case, we have found some theoretical results that establish a
relationship between topological and pre-ordonnance approaches. For instance, from



Table 5. Continuous data - Topology similarities: S(Vui ,Vu j )

S uE uMah uMan uMinγ
uT ch uCos uCan uSC uWE uχ2 uJD uHI uρ uNE

uE 1
uMah .876 1
uMan .964 .840 1
uMinγ

.964 .876 .947 1
uT ch .947 .858 .929 .964 1
uCos .858 .858 .840 .840 .858 1
uCan .911 .840 .929 .893 .911 .822 1
uSC .947 .840 .947 .929 .947 .858 .947 1
uWE 1 .876 .964 .964 .947 .858 .911 .947 1
uχ2 .947 .840 .947 .929 .947 .858 .947 1 .947 1
uJD .947 .840 .947 .929 .947 .858 .947 1 .947 1 1
uHI .884 .813 .884 .867 .902 .884 .884 .920 .884 .920 .920 1
uρ .867 .849 .831 .867 .867 .973 .796 .849 .867 .849 .849 .876 1

uNE .938 .849 .956 .938 .938 .831 .920 .920 .938 .920 .920 .858 .840 1

Table 6. Binary data - Topology similarities: S(Vui ,Vu j )

S u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15 u16 u17 u18 u19 u20 u21 u22

u1 1 1 .994 .990 1 .941 .908 .987 .838 .987 .992 .987 .909 .996 .982 .998 .922 .922 .992 .987 .987 .987
u2 1 .994 .990 1 .941 .908 .987 .838 .987 .992 .987 .909 .996 .982 .998 .922 .922 .992 .987 .987 .987
u3 1 .987 .994 .935 .914 .988 .838 .988 .998 .988 .914 .997 .987 .996 .928 .928 .998 .988 .988 .988
u4 1 .990 .930 .901 .980 .828 .980 .985 .980 .902 .989 .974 .991 .915 .915 .985 .980 .980 .980
u5 1 .941 .908 .987 .838 .987 .992 .987 .909 .996 .982 .998 .922 .922 .992 .987 .987 .987
u6 1 .850 .939 .875 .939 .933 .939 .851 .937 .924 .939 .865 .865 .933 .939 .939 .939
u7 1 .910 .906 .910 .916 .910 .977 .912 .909 .910 .986 .986 .916 .910 .910 .910
u8 1 .832 1 .989 1 .910 .988 .977 .989 .919 .919 .989 1 1 1
u9 1 .832 .838 .832 .886 .836 .834 .837 .900 .900 .838 .832 .832 .832
u10 1 .989 1 .910 .988 .977 .989 .919 .919 .989 1 1 1
u11 1 .989 .917 .996 .986 .994 .930 .930 1 .989 .989 .989
u12 1 .910 .988 .977 .989 .919 .919 .989 1 1 1
u13 1 .913 .910 .910 .986 .986 .917 .910 .910 .910
u14 1 .986 1 .926 .926 .996 .988 .988 .988
u15 1 .983 .923 .923 .986 .977 .977 .977
u16 1 .924 .924 .994 .989 .989 .989
u17 1 1 .930 .919 .919 .919
u18 1 .930 .919 .919 .919
u19 1 .989 .989 .989
u20 1 1 1
u21 1 1
u22 1

Theorem 1 of pre-ordonnance equivalence we can deduce the following property which
says that in the case where f is strictly monotonic then if the preorder is preserved this
implies that the topology is preserved and vice versa. This property can be formulated
as follow:

Property 1. Let f be a strictly monotonic function of R+ in R+, ui and u j two proximity
measures such as: ui(x,y)→ f (ui(x,y)) = u j(x,y) then,



ui(x,y) ≤ max(ui(x,z) , ui(y,z))⇔ u j(x,y) ≤ max(u j(x,z) , u j(y,z)).

Proof. Suppose: max(ui(x,z) , ui(y,z)) = ui(x,z), by Theorem 1,

ui(x,y)≤ ui(x,z)⇒ f (ui(x,y))≤ f (ui(x,z)),

again, ui(y,z)≤ ui(x,z)⇒ f (ui(y,z))≤ f (ui(x,z))

⇒ f (ui(x,z))≤ max( f (ui(x,z)), f (ui(y,z))),

hence the result, u j(x,y)≤ max(u j(x,z),u j(y,z)).

The reciprocal implication is true, because if f is continuous and strictly monotonic
then its inverse f−1 is continuous in the same direction of variation of f .

We can also propose the following theorem:

Theorem 2. Equivalence in topology. Let ui and u j two proximity measures, if there
exists a strictly monotonic f such that for every pair of objects (x,y) we have: ui(x,y) =
f (u j(x,y) then, ui and u j induce identical topological graphs and therefore they are
equivalent: ui ≡ u j.

The converse is also true, i.e. two proximity measures which are dependent on each
other induce the same topology and are therefore equivalent.

Proposition 1. In the context of topological structures induced by the graph of relative
neighbors, if two proximity measures ui and u j are equivalent in pre-ordonnance, they
are necessarily topologically equivalent.

Proof. If ui ≡ u j (pre-ordonnance equivalence) then,

ui(x,y)≤ ui(z, t)⇒ u j(x,y)≤ u j(z, t) ∀x,y,z, t ∈ Rp.

We have, especially for t = x = y and z 6= t,{
ui(x,y)≤ ui(z,x)⇒ u j(x,y)≤ u j(z,x)
ui(x,y)≤ ui(z,y)⇒ u j(x,y)≤ u j(z,y)

we deduce, ui(x,y)≤ max(ui(z,x),ui(z,y)) ⇒ u j(x,y)≤ max(u j(z,x),u j(z,y))

using symmetry property P1,

ui(x,y)≤ max(ui(x,z),ui(y,z)) ⇒ u j(x,y)≤ max(u j(x,z),u j(y,z))

hence, ui ≡ u j (topological equivalence).

Remark 1. Influence of structure: ui ≡ u j (pre-ordonnance equivalence) ⇒ ui ≡ u j
(RNG topological equivalence) ⇐ ui ≡ u j (GG topological equivalence).



5.2 Empirical illustrations

According to the two similarity matrices, respectively Tables 3 and 5 for continuous
data and Tables 4 and 6 for binary data, associated with each approach, we have carried
out some comparisons.

– The results of pairwise comparisons are somewhat different, some are closer than
others. We note that three pairs of proximity measures (uE ,uWE), (uSC,uJD) and
(uχ2 ,uJD) are in perfect pre-ordonnance equivalence (S(ui,u j) = 1) are in perfect
topology equivalence (S(Vui ,V u j) = 1). However, the converse is not true, for ex-
ample, the pair (uSC,uχ2) which is in perfect topological equivalence is not in per-
fect pre-ordonnance equivalence. The results of pairwise comparisons, for binary
data are also not very different, some are closer than others. We can note that all
pairs of proximity measures (ui,u j) which are in perfect pre-ordonnance equiva-
lence (S(ui,u j) = 1) are in perfect topology equivalence (S(Vui ,V u j) = 1). But for
example, the pair (u14:Sokal-Sneath , u16:Baroni-Urbani) which is in perfect topol-
ogy equivalence is not in perfect pre-ordonnance equivalence.

– To view these proximity measures, we propose, to apply an algorithm to construct
a hierarchy according to Ward’s criterion [25]. Proximity measures are grouped ac-
cording to their degree of resemblance, and also compared with their associated ad-
jacency matrices. This yields the dendrograms shown in Figures 4 and 5. We found
also that the clustering results differ depending on whether the proximity measures
were compared using pre-ordonnance equivalence or topological equivalence.

– To statistically compare the two approaches, we propose, to use the non-parametric
Spearman’s test. The two (q×q) similarity matrices S(ui;u j) and S(Vui ;Vu j) asso-
ciated to the proximity measures ui and u j taken, among the q = 14 identified in
Table 1 or among the q = 22 identified in Table 2, are unfolded to two vectors com-
prising the N = q(q−1)/2 upper-diagonal values. These vectors will be considered
as continuous variables, matched-pairs of N objects. We use the Spearman rank cor-
relation statistic in order to measure the degree of dependence between these two
variables. In practice, a simple formula is normally used to calculate Spearman’s
rank coefficient:

ρs = ρs[S(ui ; u j);S(Vui ; Vu j)] = 1− 6∑x ∑y6=x(Ri(x,y)−R j(x,y))2

N(N2−1)

where, Ri(x,y) and R j(x,y) are respective ranks of ui(x,y) and u j(x,y). The ranks
of the N pairs of proximity values between x and y by ui are compared according to u j.

This definition shows that the equivalence is not based on the numerical values of
the two matrices, but on preorders induced on pairs of points. The correlation coeffi-
cient of Spearman’s ranking is a number between −1 and +1, in the case of perfect
dependence. When the two proximity measures are mutually independent, the coeffi-
cient takes the value 0. We test the null hypothesis of independence (H0 : ρs = 0) with
this coefficient.



a) Topological structure: Relative Neighbors Graph (RNG)

b) Preordonnance

Fig. 4. Continuous data - Comparison of hierarchical trees

This comparison between indices of proximity has also been studied by [20]. The
authors propose an empirical approach that aims to compare proximity matrices ob-
tained by each proximity measure on pairs of objects using the Mantel test [13] based
on the Spearman correlation ranks. For this purpose, we can also, use a generalized
Kendall’s tau based on concordance of ranks, such as in [18].

Thus, for our illustrative examples, Iris-data and Zoo-data, the calculated ρs Spear-
man rank correlations and p-values are respectively equal to 0.848 with a p-value less
than 0.01% and equal to 0.762 with a p-value less than 0.01%. Since these probabilities
are less than a significance level of 5%, the null hypothesis are rejected in the two tests.
We can therefore conclude that the preorders in pre-ordonnance and in topology are not
significantly different. We obtain equivalent statistical results with Kendall’s correlation
coefficient.

a) Topological structure: Graph Neighbors Relative (GNR)
b) Preordonnance

Fig. 5. Binary data - Comparison of Hierarchical trees

6 Conclusion

In this paper, we have proposed a new approach for comparing proximity measures.
This approach produces results that are not totally identical to those produced by former
methods. One might wonder which approach is the best? This question is not relevant.
The topological approach described here has some connections with pre-ordonnance,
but proposes another point of view for comparison. The topological approach have a
lower time complexity. Of course, many questions are still unanswered. For instance,
does the clustering of proximity measure remain identical when the data set changes?
What is the sensitivity of the empirical results when we use different neighborhood
graphs? Too many questions are still in the study stage.
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