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Abstract. The choice of a proximity measure between objects has a direct impact
on the results of any operation of classification, comparison, evaluation or structuring
a set of objects. In many application fields, for a given problem, the user is prompted
to choose one among the many existing proximity measures. However, according to
the notion of topological equivalence chosen, some are more or less equivalent.

In this paper, we propose a new comparison approach of proximity measures for
the purpose of discrimination and in a new concept of topological equivalence. This
approach exploits the concept of the local neighborhood. It defines discriminant
equivalence between two proximity measures as having the same neighborhood struc-
ture on the objects of a set of explanatory continuous variables according to a target
qualitative variable that we want to explain.

According to the notion of topological equivalence based on the concept of neigh-
borhood graphs, we use adjacency binary matrices, associated with proximity mea-
sure, Between and Within groups to classify. Some of the proximity measures are
more or less equivalent, which means that they produce, more or less, the same dis-
crimination results. We then propose to define the topological equivalence between
two proximity measures through the topological structure induced by each measure.

It believes that two proximity measures are topologically equivalent if they induce
the same neighborhood structure on the objects in purpose of discrimination. The
comparison adjacency matrix is a useful tool for measuring the degree of resemblance
between two empirical proximity matrices in a discriminating context. To view these
proximity measures, we propose an hierarchy of proximity measures which are grouped
according to their degree of resemblance in a topological context of discrimination.

We illustrate the principle of this approach on a simple real example of continuous
explanatory data for about a dozen proximity measures of the literature.
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and adjacency matrices, neighborhood graph, topological equivalence.

1 Introduction

Compare objects, situations or ideas are essential tasks to identify something,
assess a situation, structuring a set of tangible and abstract elements etc.
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In a word to understand and act, you must know compare. This comparison,
that the brain accomplishes naturally, however be explained if one wants to
perform a machine. For this, we used the proximity measures.

Proximity measures are characterized by specific mathematical properties.
Are they all the same? Can they be used in the practice of undifferentiated
way? In other words, is that, for example, the proximity measure between
individuals plunged in a multidimensional space as Rp, influence or not the
result of a supervised classification? Is that how the similarity or dissimilarity
between objects is measured affects the result of this method? If yes, how to
decide what measure of similarity or dissimilarity must be used.

This problem is important in practical applications. It is the same in many
areas when we want to group individuals into classes. How to measure the
distance directly impacts the composition groups obtained. In Table 1, we give
some conventional proximity measures, defined on Rp.

Measure Short Formula

Euclidean Euc uE(x, y) =
√∑p

j=1(xj − yj)2

Mahalanobis Mah uMah(x, y) =
√

(x− y)t
∑−1(x− y)

Manhattan Man uMan(x, y) =
∑p

j=1 |xj − yj |
Minkowski Min uMinγ (x, y) = (

∑p
j=1 |xj − yj |γ)

1
γ

Tchebytchev Tch uTch(x, y) = max1≤j≤p |xj − yj |
Cosine Dissimilarity Cos uCos(x, y) = 1− <x,y>

∥x∥∥y∥

Canberra Can uCan(x, y) =
∑p

j=1

|xj−yj |
|xj |+|yj |

Squared Chord SC uSC(x, y) =
∑p

j=1(
√
xj −

√
yj)

2

Weighted Euclidean WE uWE(x, y) =
√∑p

j=1 αi(xj − yj)2

Chi-square χ2 uχ2(x, y) =
∑p

j=1

(xj−mj)
2

mj

Histogramm Intersection HI uHI(x, y) = 1−
∑p

i=1(min (xi,yi))∑p
j=1 yj

Normalized Euclidean NE uNE(x, y) =
√∑p

j=1(
xj−yj

σj
)2

Table 1. Some proximity measures.

Where p is the dimension of space, x = (xj)j=1,...,p and y = (yj)j=1,...,p two points

in Rp, (αj)j=1,...,p ≥ 0,
∑−1 the inverse of the variance and covariance matrix, σ2

j

the variance, γ > 0 and mj =
xj+yj

2
.

2 Topological equivalence

This approach is based on the concept of a topological graph which uses a
neighborhood graph in a discriminant context. The basic idea is quite sim-
ple: we can associate a neighborhood graph to each proximity measure from
which we can say that two proximity measures are equivalent if the topological



graphs induced are the same. To evaluate the similarity between proximity
measures, we compare neighborhood graphs and quantify to what extent they
are equivalent.

2.1 Topological graphs

For a proximity measure u, we can build a neighborhood graph on a set of
individuals-objects where the vertices are the individuals and the edges are
defined by a neighborhood relationship property. We thus simplify have to
define the neighborhood binary relationship between all couples of individuals.
We have plenty of possibilities for defining this relationship. For instance, we
can use the definition of the Relative Neighborhood Graph (RNG), [16], where
two individuals are related if they satisfy the following property:{

Vu(x, y) = 1 if u(x,y)≤ max(u(x, z), u(y, z)) ; ∀z ∈ Rp, z ̸= x, y
Vu(x, y) = 0 otherwise (1)

Geometrically, this property means that the hyper-lunula (the intersection
of the two hyper-spheres centered on two points) is empty. The set of couples
that satisfy this property result in a related graph such as that shown in Fig-
ure 1. For the example shown, the proximity measure used is the Euclidean
distance. The topological graph is fully defined by the adjacency matrix as in
Figure 1.



Vu . . . x y z t u . . .
... . . .

...
...
...
...
... . . .

x . . . 1 1 0 0 0 . . .
y . . . 1 1 1 1 0 . . .
z . . . 0 1 1 0 1 . . .
t . . . 0 1 0 1 0 . . .
u . . . 0 0 1 0 1 . . .
... . . .

...
...
...
...
... . . .


Fig. 1. Topological graph built on RNG property.

In order to use the topological approach, the property of the relationship
must lead to a related graph. Of the various possibilities for defining the binary
relationship, we can use the properties in a Gabriel Graph (GG), [15], or any
other algorithm that leads to a related graph such as the Minimal Spanning
Tree (MST), [7]. For a given neighborhood property (MST, GG, RNG), each
measure u generates a topological structure on the objects which are totally
described by the adjacency matrix Vu.

For this work, we use only the Relative Neighborhood Graph, [23].



2.2 Comparison of proximity measures

We denote {xj ; j = 1, p} the set of p explanatory quantitative variables and
y the qualitative variable to explain, partition of n =

∑q
k=1 nk individuals-

objects in q groups {Gk; k = 1, q}.
From the previous material, using topological graphs represented by an ad-

jacency matrix, we can evaluate the similarity between two proximity measures
via the similarity between the topological graphs each one produces. To do so,
we just need the adjacency matrix associated with each graph.

For any proximity measure u, we built according to the property (1), the
overall adjacency matrix Vu that presents itself as a juxtaposition of adjacency
matrices (binary and symmetric) Within V Gk

u and Between V Gkl
u groups:{

VGk
u (x, y) = 1 if u(x,y) ≤ max(u(x, z), u(y, z)) ; ∀x, y, z ∈ Gk, z ̸= x, y

VGk
u (x, y) = 0 otherwise{

VGkl
u (x, y) = 1 if u(x,y) ≤ max(u(x, z), u(y, z)) ; ∀x ∈ Gk, y ∈ Gl, z ̸= x, y

VGkl
u (x, y) = 0 otherwise

• The first objective is to group and view the different proximity measures,
according to their topological similarity in the context of discrimination.

Note that Vui and Vuj are two adjacency matrices associated with both
proximity measures ui and uj . To measure the degree of similarity between
the two proximity measures, we just count the number of discordances between
the two adjacency matrices.

So, to measure the topological equivalence of discrimination between the
proximity measures ui and uj , we propose to test whether the associated ad-
jacency matrices Vui and Vuj are statistically different or not, using a non-
parametric test on paired binary data. The degree of topological equivalence
between two proximity measures is measured by the quantity:

S(Vui , Vuj ) =
∑n

k=1

∑n
l=1 δkl

n2 where δkl =
{ 1 if Vui(k, l) = Vuj (k, l)

0 otherwise.

S(Vui , Vuj ) is the measure of similarity which varies in the range [0, 1]. A
value of 1 means that the two adjacency matrices are identical and therefore
the topological structure induced by the two proximity measures is the same,
meaning that the proximity measures considered are equivalent. A value of 0
means that there is a full discordance between the two matrices.

The similarity S(Vui , Vuj ) is thus the extent of agreement between the ad-
jacency matrices.

• The second objective is to establish a criterion for selection aid of the
”best” proximity measure that well discriminates the q groups, among the
considered proximity measures.

We note, Vu∗ = diag(1G1 , . . . , 1Gk
, . . . , 1Gq ) the adjacency block diagonal

reference matrix, ”perfect discrimination of the q groups” according to an un-
known proximity measure denoted u∗. Where 1nk

is the vector of order nk

which all components are equal to 1 and 1Gk
= 1nk

t1nk
, is the symmetric

matrix of order nk which all the elements are equal to 1.



Vui =


VG1

u

· · ·
VGk1

u · · · VGk
u

· · ·
V

Gq1
u · · · VG1k

u · · · VGq
u

 ; Vu∗ =


1G1

0 · · ·
0 0 1Gk

0 0 0 · · ·
0 0 0 0 1Gq


Thus, we can also establish the degree of topological equivalence of discrim-

ination S(Vui , Vu∗) between each considered proximity measures ui and the
reference measure u∗.

3 Application example

In this section, we describe the results obtained by applying proximity measures
on real continuous data to illustrate this topological discriminant approach.

We consider a sample of small cars [8] with seven observed explanatory vari-
ables (price, urban consumption, engine capacity, maximum speed, maximum
volume of trunk, weight/power ratio, length). The target qualitative variable
to discriminate is the brand of the carmaker with two modalities-groups, French
and Foreign cars.

We want to visualize the similarities between the proximity measures in
order to see which measures are close to one another in a discriminant context.
As we already have a similarity matrix between proximity measures, we can
use any classic visualization techniques to achieve this. For example, we can
build a dendrogram of hierarchical clustering of the proximity measures. We
can also use Multidimensional scaling or any other technique to map the 12
considered proximity measures.

S uE uMah uMan uMinγ
uTch uCos uCan uSC uWE u

χ2 uHI uNE

uE 1
uMah .746 1
uMan .946 .746 1
uMinγ

.977 .741 .923 1

uTch .905 .724 .859 .918 1
uCos .832 .741 .841 .837 .819 1
uCan .796 .805 .814 .782 .746 .800 1
uSC .936 .773 .927 .923 .887 .832 .814 1
uWE 1 .746 .946 .977 .905 .832 .796 .936 1
u
χ2 .941 .769 .946 .977 .891 .828 .809 .995 .941 1

uHI .660 .660 .678 .655 .655 .673 .682 .642 .660 .646 1
uNE .751 .850 .741 .737 .728 .755 .864 .769 .751 .764 .655 1

u∗ .497 .524 .506 .492 .483 .510 .510 .506 .497 .501 .456 .501

Table 2. Topological equivalence - Similarities S(Vui , Vuj ) and S(Vui , Vu∗).

Table 2 summarizes the similarities between the 12 conventional proximity
measures of Table 1. The application of an algorithm to build an hierarchy of
the partition, Ascendant Hierarchical Clustering according to ward [24] crite-
rion, allows to obtain the dendrogram of Figure 2.

The vector of similarities S(Vu∗ , Vui), between the reference measure and
the proximity measures considered, is positioned as illustrative element in the
analysis.
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Fig. 2. Hierarchical Tree - Topological structure with Relative Neighbors Graph.

Classe 1 Classe 2 Classe 3 Classe 4
Frequency 7 1 1 3
Active measures uE ,uMan,uMinγ ,uTch,uSC , uWE , uχ2 uCos uHI uMah, uNE ,uCan

Illustrative measure u∗

Table 3. Assignment of the reference measure.

Given the results presented in Table 3, for the selection of the ”best” proxim-
ity measure among the 12 measures considered, the unknown reference measure
u∗, projected as illustrative element, would be closer to measures of class 3,
that is to say, the histogramm intersection measure uHI .

4 Conclusion and perspectives

The choice of a proximity measure is highly subjective, it is often based on
habits or on criteria such as a posteriori interpretation of the results. This
work proposes a new approach of equivalence between proximity measures in
a discrimination context. This topological approach is based on the concept
of neighborhood graph induced by the proximity measure. From a practical
point of view, in this paper, the compared measures are all built on explanatory
quantitative data, but this work may well extend to qualitative data by choosing
the correct topological structure and the adapted proximity measures. We
are considering to extend this work to other topological structures and use a
comparison criterion, other than classification techniques to validate the degree
of equivalence between two proximity measures. For example, a criterion based
on a nonparametric test (e.g., the concordance coefficient of Kappa) on the
binary data of the adjacency matrix associated to proximity measures. This
will allow to give a statistical significance between the two similarity matrices
and to validate or not the topological equivalence of discrimination, that is to
say, if they really induce or not the same structure of the neighborhood groups
objects to be separated.
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