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Abstract. In this paper, we propose a new discriminant approach, called Topological
Discriminant Analysis, which use a proximity measure in a topological context. The
results of any operation of clustering or classification of objects strongly depend on
the proximity measure chosen. The user has to select one measure among many
existing ones. Yet, from a discrimination point of view, according to the notion
of topological equivalence chosen, some measures are more or less equivalent. The
concept of topological equivalence uses the basic notion of local neighborhood.

In a discrimination context, we first define the topological equivalence between the
chosen proximity measure and the perfect discrimination measure adapted to the data
considered, through the adjacency matrix induced by each measure, then propose a
new topological method of discrimination using this selected proximity measure. To
judge the quality of discrimination, in addition to the classical percentage of objects
well classified, we define a criterion for topological equivalence of discrimination.

The principle of the proposed approach is illustrated using a real data set with
conventional proximity measures of literature for quantitative variables. The results
of the proposed Topological Discriminant Analysis, associated to the “best” discrim-
inating proximity measure, are compared with those of classical metric models of
discrimination, Linear Discriminant Analysis and Multinomial Logistic Regression.

Keywords: Proximity measure; Topological structure; Neighborhood graph;
Adjacency matrix; Topological equivalence; discrimination..

1 Introduction

In order to understand and act on situations that are represented by a set
of objects, very often we are required to compare them. Humans perform
this comparison subconsciously using the brain. In the context of artificial
intelligence, however, we should be able to describe how the machine might
perform this comparison. In this context, one of the basic elements that must
be specified is the proximity measure between objects.

Certainly, application context, prior knowledge, data type and many other
factors can help in identifying the appropriate measure. However, the number
of candidate measures may still remain quite large. In a discriminant context
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for example, can we consider that all those measures remaining are equivalent
and just pick one of them at random? Or are there some that are equivalent
and, if so, to what extent? This information might interest a user when seeking
a specific measure.

For instance, in information description, supervised or unsupervised cluster-
ing, choosing a given proximity measure is an important issue. We effectively
know that the result of a query depends on the measure used. For this rea-
son, in our context, users may wonder, which one is more discriminant? Very
often, they try many of them, randomly or sequentially, seeking a ”suitable”
discriminant proximity measure.

We find this problematic in the context of a unsupervised or supervised
classification - discrimination [1]. The assignment or the classification of an
object to a class partly depends on the used learning database. According to
the selected proximity measure, this database changes and therefore the re-
sult of the classification changes too. Here we are interested to the degree of
topological equivalence of discrimination of these proximity measures. Several
studies on topological equivalence of proximity measures have been proposed,
[4] [20] [5] [13] [26], but neither of these propositions has an objective of dis-
crimination.

A criterion for comparing and selecting the “best” discriminant proximity
measure is defined in [1]. We propose here, using this chosen “best” dis-
criminant measure, a new approach called Topological Discriminant Analysis
(TDA).

This paper is organized as follows. We recall in Section 2, the basic no-
tions of structure, graph and topological equivalence. In section 3 presents
the principle of the topological discriminant analysis. The Section 4 begins
with an illustrative example with continuous data, followed by comparisons of
performances between the proposed TDA and two other classical models of
discrimination. A conclusion and some perspectives of this work are given in
Section 4.

2 Topological Equivalence

The topological equivalence is based on the concept of topological graph also
referred to as neighborhood graph. The basic idea is actually quite simple:
two proximity measures are equivalent if the corresponding topological graphs
induced on the set of objects remain identical. Measuring the similarity be-
tween proximity measures consists in comparing the neighborhood graphs and
measure their similarity. We will first define more precisely what a topological
graph is and how to build it. Then, we propose a measure of proximity between
topological graphs that will subsequently be used to compare the proximity
measures.

Consider a set E = {x, y, z, . . .} of n = |E| objects in IRp. We can, by
means of a proximity measure u, define a neighborhood relationship Vu to be
a binary relationship on E × E. There are many possibilities for building this
neighborhood binary relationship.



Thus, for a given proximity measure u, we can build a neighborhood graph
on a set of individuals-objects, where the vertices are the individuals and the
edges are defined by a property of neighborhood relationship. Many definitions
are possible to build this binary neighborhood relationship.

For example, we can built on E×E the Minimal Spanning Tree (MST) [12]
and define for two objects x and y, if the objects are directly connected by
an edge. In this case, Vu(x; y) = 1 otherwise Vu(x; y) = 0. So, Vu forms the
adjacency matrix associated with the MST graph, consisting of 0 and 1.
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Vu . . . r s t . . . x y z . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
r . . . 1 0 0 . . . 0 0 1 . . .
s . . . 0 1 0 . . . 0 1 0 . . .
t . . . 0 0 1 . . . 1 0 0 . . .
...

...
...

...
...

...
...

...
...

...
x . . . 0 0 1 . . . 1 0 0 . . .
y . . . 0 1 0 . . . 0 1 0 . . .
z . . . 1 0 0 . . . 0 0 1 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


Fig. 1. Minimal Spanning Tree Graph - Adjacency matrix

Alternatively we can use the Gabriel Graph (GG) [17] [10] [16], in which all
pairs of neighbour points (x, y) satisfy the following property.

Property 1. Gabriel Graph (GG): ∀x, y ∈ E ∀z ∈ E − {x, y}{
Vu(x, y) = 1 if u(x, y) ≤ min(

√
u2(x, z) + u2(y, z))

Vu(x, y) = 0 otherwise
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Vu . . . r s t . . . x y z . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
r . . . 1 0 0 . . . 0 0 0 . . .
s . . . 0 1 0 . . . 0 1 0 . . .
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...
x . . . 0 0 1 . . . 1 1 0 . . .
y . . . 0 1 1 . . . 1 1 0 . . .
z . . . 0 0 0 . . . 0 0 1 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


Fig. 2. Gabriel Graph - Adjacency matrix

Geometrically, the diameter of the hypersphere u(x, y) is empty.



One can choose, the Relative Neighbohood Graph (RNG) [22] [11], where,
all pairs of neighbour points (x, y) satisfy the following property.

Property 2. Relative Neighborhood Graph (RNG): ∀x, y ∈ E ; ∀z ∈ E−{x, y}{
Vu(x, y) = 1 if u(x, y) ≤ max[u(x, z), u(y, z)]
Vu(x, y) = 0 otherwise

That is, if the pairs of points verify or not the ultra-triangular inequality of
property 2, ultrametric condition. Which means geometrically that the RNG
is a connection scheme in which two points are connected if the hyper-lunula
(intersection between the two hyperspheres centered on two points with radius
equal to the distance between the points) is empty.
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Fig. 3. Relative Neighborhood Graph - Adjacency matrix

For a given neighborhood property (MST, GG or RNG), each measure u
generates a topological structure on the objects in E which are totally described
by the binary adjacency matrix Vu.

Figures 1, 2 and 3 show an example of each topological graph perfectly
defined in IR2 by the associated binary adjacency matrix Vu. In these exam-

ples, the proximity measure u(x, y) = uEuc(x, y) =
√
(
∑2

j=1(x
j − yj)2) is the

Euclidean distance.

3 Topological Discriminant Analysis

In this part, we use the following notations to present the topological discrim-
inant approach TDA on continuous explanatory variables.

Let us denote: X(n,p) the data matrix associated to the p centred continuous
explanatory variables, associated to the set of the p discriminant variables
{xj ; j = 1, p}, with n rows-objects and p columns-variables,
Y(n,q) the data matrix associated to the q dummy variables {yk; k = 1, q} of



the explain qualitative variable y with q modalities or groups to discriminate,
Dn = 1

nIn the diagonal weights matrix of the n individuals and In the unit
matrix with n order,
Dq = tY DnY the diagonal weights matrix of the q modalities of the target
variable y, define by [Dq]kk = nk

n , ∀k = 1, q ,
χ2
y = D−1

q the matrix associated to the Chi-square distance,
G(q,p) = χ2

y
tY DnX the matrix associated to the q centres of gravity in IRp.

Let E = {x, y, z, . . .} and G = {G1, · · · , Gk, · · · , Gq} be the sets of n = |E|
objects and q = |G| centres of gravity in IRp.

We define a neighborhood relationship on E × G by means of the “best”
discriminating proximity measure, previously selected [1], denoted u, and the
associated binary adjacency matrix Vu.

A object x ∈ E and a centre of gravity Gk ∈ G verify the neighborhood
property 1, according to GG, if they are connected by a direct edge diameter
u(x,Gk). The vertices x and Gk are neighbors within the meaning of Gabriel
if and only if they satisfy the following property.

Property 3. Gabriel Graph (GG) - ∀x ∈ E ; ∀Gl ̸= Gk ∈ G :{
Vu(x,Gk) = 1 if u(x,Gk) ≤ min

√
u2(x,Gl) + u2(Gk, Gl)

Vu(x,Gk) = 0 otherwise

From a geometrical point of view, the hypersphere diameter u(x,Gk) con-
tains no other centre of gravity than Gk, mathematically, this means that,
∀Gl ∈ G u(x,Gk) ≤ u(x,Gl), thus, the object x is closer to the group Gk than
of any other group.
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Vu G1 G2 G3

. . . . . . . . . . . .
r 1 0 0
s 0 0 1
t 0 1 0
...

...
...

...
x 1 0 0
y 1 0 0
z 0 1 0
. . . . . . . . . . . .


Fig. 4. Gabriel graph - Adjacency matrix

Figure 4 shows, an example of a topological graph (GG) perfectly defined
in IR2 and the associated binary adjacency matrix Vu according to property
3. In this case, u(x,Gk) = uEuc(x,Gk) is the Euclidean distance. Thus, the
object x is connected by an edge to the centre of gravity G1 because the circle
diameter u(x,G1) contains no other of the two centres of gravity G2 and G3

then Vu(x,G1) = 1 and Vu(x,G2) = Vu(x,G3) = 0.



We note, Vu∗ the reference adjacency matrix, “perfect” discrimination of the
q groups according to an unknown “perfect” discriminant proximity measure
denoted u∗.

Like any technical of discrimination, the performance of the TDA approach
can result in a confusion matrix that allows to measure the error rate or the
percentage of objects well classified measured by the quantity:

%W.C. = 100
n trace( tVu∗ Vu )

Where, the reference binary adjacency matrix V ∗
u associated with the un-

known “perfect” discriminant measure u∗, exactly corresponds to the binary
matrix Y(n,q).

For this topological approach, can also be considered as a quality criterion,
the degree of topological equivalence of discrimination S(Vu , Vu∗), which mea-
sures according to property 2, the similarity between the best and the perfect
adjacency matrices is measured by the following property of concordance.

Property 4. Topological equivalence between two adjacency matrices:

S(Vu, Vu∗) =
∑n

k=1

∑n
l=1 δkl

n2 with δkl =
{ 1 if Vu(k, l) = Vu∗(k, l)

0 otherwise.

In order to evaluate the discriminating power of the topological proposed
approach, we compare it with two supervised models, Linear Discriminant
Analysis (LDA) and Multinomial Logistic Regression (MLR) which are most
commonly used as dimensionality reduction technique and machine learning
applications.

The general LDA approach is very similar to a Principal Component Anal-
ysis (PCA), but in addition to finding the component axes that maximize the
variance of the data (PCA), we are additionally interested in the axes that max-
imize the separation between multiple classes (LDA). Unlike methods LDA and
MLR, the proposed TDA does not develop function or model, it includes only
one step in which each object is directly classified according to neighborhood
graph, completely characterized by the adjacency matrix associated and the
proximity measure chosen. This same step is also used to classify an anony-
mous object.

Moreover TDA approach assumes no specific condition, does not really in-
convenience in its application, nor even constraint in very large dimension,
except perhaps a complexity problem attended by massive data. Which is not
the case of LDA (assumes normal distributed data, features statistically inde-
pendent and identical covariance matrices for every class, problem of outliers,
etc.) and MLR ( many specific statistical tests, parameter estimates, miss-
ing values, does not converge in case of complete separation of classes, etc.)
methods.



4 Application example

To illustrate the application of TDA to a real data set, we use a famous iris
data set collected by Anderson [3] and which originally inspired Fisher [9]
to develop LDA. This dataset contains measurements for 150 iris flowers from
three different species (setosa, virginica and versicolor). Four predictor features
were measured on 50 samples for each species: sepal lenght, sepal width, petal
lenght and petal width. The complete data has been deposited on the UCI
machine learning repository [23], data matrices and their dimensions are given
in Table 1.

Name Explanatory continuous variables Variable to explain

Iris X(n×p) Y(q)

Dimension 150× 4 3

Table 1. Data sets

The main results of the proposed TDA approach are presented in the fol-
lowing numerical tables. They allow to visualize the proximity measures that
are close to each other in a context of discrimination. First, we select the best
discriminant measure for the considered data [1], then we perform TDA and
finally, we compare the obtained results with those of LDA and MLR discrim-
ination models.

Table 7 in Appendix shows some classic proximity measures used for con-
tinuous data, defined on IRp. The Iris dataset used is from the UCI Machine
Learning Repository [23].

G(q,p) Sepal Petal
lenght width lenght width

setosa 5.006 3.428 1.462 0.246
versicolor 5.936 2.770 4.260 1.326
virginica 6.588 2.974 5.552 2.026

Table 2. Centres of gravity matrix in IR4

It was shown in [1] and [26] using a series of experiments, that the choice of
a proximity measure has an impact on the results of a supervised or unsuper-
vised classification. In view of the results of the comparison than the selection
measure [1], the unknown “perfect” discriminant measure u∗ would be closer
to the cosine dissimilarity measure uCos which would be, for these Iris data,
the “best” discriminant proximity measure among the 16 measures presented
in Appendix Table 7.



Thus, this first part indicates that cosine dissimilarity measure is the “best”
discriminant measure, it’s the most appropriate measure to well separate and
differentiate the three species of iris flowers. The cosine measure between the
three centres of gravity (Table 2) is given in Table 3.

uCos(Gk, Gl) setosa versicolor virginica

setosa 0
versicolor 0.075 0
virginica 0.112 0.004 0

Table 3. Matrix of cosine measure between the centres of gravity

Table 4 summarizes the main results of the TDA with Cosine dissimilarity
measure, the cross-classification table of predicted and actual species assign-
ments - the confusion matrix and the percentages of concordance and well
classified.

TDA Predicted setosa versicolor virginica

setosa 50 0 0
Actual versicolor 0 47 3

virginica 0 0 50

Topological equivalence: 98.67%
Well classified: 98.00%

Table 4. Confusion matrix - Topological Discriminant Analysis

The main results of the proposed TDA, applied to each of the sixteen adja-
cency matrices induced by the sixteen proximity measures given in Appendix
Table 7 are presented in Appendix Table 8. Thus, for the Iris dataset, it shows
that the best TDA, with a greater percentages of well classified (98.00%) and
topological equivalence (98.67%), is obtained with the cosine dissimilarity mea-
sure uCos.

Tables 5 and 6 summarizes the main results of the classical discriminant
models in a metric context. Thus, from a comparison point of view, according
to the criterion of the percentage of well classified, the topological approach
TDA presents a discriminating power substantially similar to those of MLR
and LDA metric approaches, with a percentage of well classified around 98%
for the Iris data.



LDA Predicted setosa versicolor virginica

setosa 50 0 0
Actual versicolor 0 48 2

virginica 0 1 49

Well classified: 98.00%
Table 5. Confusion matrix - Linear Discriminant Analysis

MLR Predicted setosa versicolor virginica

setosa 50 0 0
Actual versicolor 0 49 1

virginica 0 1 49

Well classified: 98.67%
Table 6. Confusion matrix - Multinomial Logistic Regression

5 Conclusion and perspectives

The choice of a proximity measure is very subjective, it is often based on
habits or on criteria such as the interpretation of the a posteriori results. This
work uses proximity measures and proposes a new topological approach in the
context of discrimination. The proposed approach is based on the concept
of neighborhood graph induced by a proximity measure for continuous data.
Results obtained analyzing a real dataset highlights the effectiveness of the
proposed method.

Further research will regard the extension of TDA to binary, qualitative
and also mixed (quantitative and qualitative) explanatory variables by choos-
ing the best discriminant proximity measure adapted to considered data in a
topological context.

It would be interesting to extend this work to use a comparison criteria,
other than clustering technic, in order to validate the degree of topological
equivalence of discrimination between the “best” and the “perfect” discrimi-
nant measures. Using, for example, the non-parametric test of Kappa concor-
dance coefficient calculated from the associated adjacency matrix [2]. This will
allow to give a statistical significance of the degree of agreement between two
similarity matrices and to validate or not the topological equivalence in dis-
crimination, i.e, whether or not they induce the same neighborhood structure
on the groups of objects to be separated.
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Appendix

Measure Formula : Distance - Dissimilarity

Euclidean uEuc(x, y) =
√∑p

j=1(xj − yj)2

Manhattan (City-block) uMan(x, y) =
∑p

j=1 |xj − yj |

Minkowski uMinγ (x, y) = (
∑p

j=1 |xj − yj |γ)
1
γ

Tchebychev uTch(x, y) = max1≤j≤p |xj − yj |

Normalized Euclidean uNE(x, y) =
√∑p

j=1
1

σ2
j

[(xj − xj) − (yj − yj)]
2

Mahalanobis uMah(x, y) =
√

(x − y)t
∑−1(x − y)

Cosine dissimilarity uCos(x, y) = 1 −
∑p

j=1
xjyj√∑p

j=1
x2
j

√∑p
j=1

y2
j

= 1 − <x,y>
∥x∥∥y∥

Canberra uCan(x, y) =
∑p

j=1

|xj−yj |
|xj |+|yj |

Squared Pearson Correlation uCor(x, y) = 1 −
(
∑p

j=1
(xj−x)(yj−y))2∑p

j=1
(xj−x)2

∑p
j=1

(yj−y)2
= 1 − (<x−x,y−y>)2

∥x−x∥2∥y−y∥2

Squared Chord uCho(x, y) =
∑p

j=1(
√
xj − √

yj)
2

Doverlap measure uDev(x, y) = max(
∑p

j=1 xj ,
∑p

j=1 yj) −
∑p

j=1 min(xj , yj)

Weighted Euclidean uWEu(x, y) =
√∑p

j=1 αj(xj − yj)2

Gower’s Dissimilarity uGow(x, y) = 1
p

∑p
j=1 | xj − yj |

Shape Distance uSha(x, y) =
√∑p

j=1[(xj − xj) − (yj − yj)]
2

Size Distance uSiz(x, y) =|
∑p

j=1(xj − yj) |
Lpower uLpoγ (x, y) =

∑p
j=1 |xj − yj |γ

Where, p is the dimension of space, x = (xj)j=1,...,p and y = (yj)j=1,...,p two points in Rp, xj

the mean, σj the Standard deviation, αj = 1

σ2
j

,
∑−1 the inverse of the variance and covariance

matrix, γ > 0.

Table 7. Some proximity measures for continuous data.



Name Measure Topological Confusion Well Rank
Equivalence(%) Matrix Classified(%)

Euclidean uEuc 95.11

 50 0 0
0 46 4
0 7 43

 92.67 6

Manhattan uMan 94.67

 50 0 0
0 47 3
0 9 41

 92.00 7

Minkowski uMinγ=3 94.67

 50 0 0
0 45 5
0 7 43

 92.00 7

Tchebychev uTch 94.22

 50 0 0
0 45 5
0 8 42

 91.33 11

Normalized Euclidean uNEu 89.78

 49 1 0
0 39 11
0 11 39

 84.67 15

Mahalanobis uMah 91.11

 49 1 0
0 42 8
0 11 39

 86.67 13

Cosine dissimilarity uCos 98.67

 50 0 0
0 47 3
0 0 50

 98.00 1

Canberra uCan 96.89

 50 0 0
0 47 3
0 4 46

 95.33 4

Sq. Pearson correlation uCor 97.33

 50 0 0
0 47 3
0 3 47

 96.00 2

Squared Chord uCho 97.33

 50 0 0
0 47 3
0 3 47

 96.00 2

Doverlap measure uDov 92.00

 50 0 0
4 41 5
0 9 41

 88.00 12

Weighted Euclidean uWEu 56.89

 3 47 0
0 50 0
0 50 0

 35.33 16

Gower’s dissimilarity uGow 94.67

 50 0 0
0 47 3
0 9 41

 92.00 7

Shape distance uSha 96.44

 50 0 0
0 47 3
0 51 45

 94.67 5

Size distance uSiz 90.22

 50 0 0
4 40 6
0 12 38

 85.33 14

LPower uLpo 94.67

 50 0 0
0 45 5
0 7 43

 92.00 7

Table 8. Main results of the TDA according to different proximity measures


