Metadata of the chapter that will be visualized online

Chapter Title	A Topological Approact	h of Clustering
Copyright Year	2023	
Copyright Holder	The Author(s), under ex AG	clusive license to Springer Nature Switzerland
Corresponding Author	Family Name	Abdesselam
	Particle	
	Given Name	Rafik
	Suffix	
	Division	University of Lyon, Lumière Lyon 2, ERIC - COACTIS Laboratories
	Organization	Department of Economics and Management
	Address	Lyon, France
	Email	rafik.abdesselam@univ-lyon2.fr
	URL	http://perso.univ-lyon2.fr/~rabdesse/fr/
Abstract	The clustering of object approaches to explorin unsupervised clustering (HAC) and k-means p objects in a dataset to di topological approach of Individuals (TCI), stu- of a data table, based columns-variables are whether the variable is topological analysis of be quantitative, qualita the correlations or asso topological context of p correspondence analysis classifies individuals in of the variables conside illustrated here using a however, it can also be a	ets-individuals is one of the most widely used ng multidimensional data. The two common strategies are Hierarchical Ascending Clustering artitioning used to identify groups of similar wide it into homogeneous groups. The proposed of clustering, called Topological Clustering of dies a homogeneous set of individuals-rows on the notion of neighborhood graphs; the more-or-less correlated or linked according to of a quantitative or qualitative type. It enables the clustering of individual variables which can tive or a mixture of the two. It first analyzes ciations observed between the variables in the principal component analysis (PCA) or multiple (MCA), depending on the type of variable, then to homogeneous groups relative to the structure red. The proposed TCI method is presented and simple real dataset with quantitative variables; applied with qualitative or mixed variables.
(separated by "-")	Adjacency matrix - N	- rioxinity measure - Neighborhood graph - Iultivariate data analysis

Chapter 22 A Topological Approach of Clustering

1

2

3

4

Rafik Abdesselam

22.1 Introduction

The objective of this article is to propose a topological method of data analysis in the 5 context of clustering. The proposed approach, Topological Clustering of Individuals 6 (TCI) is different from those that already exist and with which it is compared. There 7 are approaches specifically devoted to the clustering of individuals, for example, the 8 Cluster procedure implemented in SAS software, but as far as we know, none of 9 these approaches has been proposed in a topological context.

Proximity measures play an important role in many areas of data analysis (Zighed 11 et al., 2012; Batagelj and Bren, 1995; Lesot et al., 2009). The results of any operation 12 involving structuring, clustering or classifying objects are strongly dependent on the 13 proximity measure chosen. 14

This study proposes a method for the topological clustering of individuals ¹⁵ whatever type of variable is being considered: quantitative, qualitative or a mixture ¹⁶ of both. The eventual associations or correlations between the variables partly ¹⁷ depends on the database being used and the results can change according to the ¹⁸ selected proximity measure. A proximity measure is a function which measures the ¹⁹ similarity or dissimilarity between two objects or variables within a set. ²⁰

Several topological data analysis studies have been proposed both in the con- ²¹ text of factorial analyses (discriminant analysis (Abdesselam, 2019), simple and ²² multiple correspondence analyses (Abdesselam, 2020, 2019), principal component ²³ analysis (Abdesselam, 2021)) and in the context of clustering of variables (Abdes- ²⁴

R. Abdesselam (🖂)

University of Lyon, Lumière Lyon 2, ERIC - COACTIS Laboratories, Department of Economics and Management, Lyon, France

e-mail: rafik.abdesselam@univ-lyon2.fr; http://perso.univ-lyon2.fr/~rabdesse/fr/

[©] The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 C. H. Skiadas, C. Skiadas (eds.), *Quantitative Demography and Health Estimates*, The Springer Series on Demographic Methods and Population Analysis 55, https://doi.org/10.1007/978-3-031-28697-1_22

selam, 2021), clustering of individuals (Panagopoulos, 2022) and this proposed TCI 25 approach. 26

This paper is organized as follows. In Sect. 22.2, we briefly recall the basic 27 notion of neighborhood graphs, we define and show how to construct an adjacency 28 matrix associated with a proximity measure within the framework of the analysis 29 of the correlation structure of a set of quantitative variables, and we present the 30 principles of TCI according to continuous data. This is illustrated in Sect. 22.3 using 31 an example based on real data. The TCI results are compared with those of the well- 32 known classical clustering of individuals. Finally, Sect. 22.4 presents the concluding 33 remarks on this work. 34

22.2 Topological Context

Topological data analysis is an approach based on the concept of the neighborhood ³⁶ graph. The basic idea is actually quite simple: for a given proximity measure for ³⁷ continuous or binary data and for a chosen topological structure, we can match a ³⁸ topological graph induced on the set of objects. ³⁹

In the case of continuous data, we consider $E = \{x^1, \dots, x^j, \dots, x^p\}$, a set of 40 p quantitative variables. We can see in Abdesselam (2021) cases of qualitative or 41 even mixed variables.

We can, by means of a proximity measure u, define a neighborhood relationship, 43 V_u , to be a binary relationship based on $E \times E$. There are many possibilities for 44 building this neighborhood binary relationship. 45

Thus, for a given proximity measure u, we can build a neighborhood graph on $_{46}$ E, where the vertices are the variables and the edges are defined by a property of $_{47}$ the neighborhood relationship.

Many definitions are possible to build this binary neighborhood relationship. One 49 can choose the Minimal Spanning Tree (MST) (Kim and Lee, 2003), the Gabriel 50 Graph (GG) (Park et al., 2006) or, as is the case here, the Relative Neighborhood 51 Graph (RNG) (Toussaint, 1980). 52

For any given proximity measure u, for continuous or binary data listed in ⁵³ Table 22.5 given in the Appendix, we can construct the associated adjacency binary ⁵⁴ symmetric matrix V_u of order p, where, all pairs of neighboring variables in E ⁵⁵ satisfy the following RNG property: ⁵⁶

$$V_{u}(x^{k}, x^{l}) = \begin{cases} 1 & \text{if } u(x^{k}, x^{l}) \leq \max[u(x^{k}, x^{l}), u(x^{t}, x^{l})]; \\ & \forall x^{k}, x^{l}, x^{t} \in E, x^{t} \neq x^{k} \text{ and } x^{t} \neq x^{l} \\ 0 & \text{otherwise.} \end{cases}$$

This means that if two variables x^k and x^l which verify the RNG property are 57 connected by an edge, the vertices x^k and x^l are neighbors. 58

Author's Proof

22 A Topological Approach of Clustering

Fig. 22.1 Data—RNG structure—Euclidean distance—Associated adjacency matrix

Figure 22.1 shows a simple illustrative example in \mathbb{R}^2 of a set of eight quantitative 59 variables $\{x^1, \dots, x^2, \dots, x^8\}$, that verify the structure of the RNG graph with 60 Euclidean distance as proximity measure: $u(x^k, x^l) = \sqrt{\sum_{i=1}^{2} (x_i^k)^2}$ 61

For example, for the first and the fourth variables, $V_{\mu}(x^1, x^4) = 1$, it means 62 that on the geometrical plane, the hyper-Lunula (intersection between the two 63 hyperspheres centered on the two variables x^1 and x^4) is empty. 64

This generates a topological structure based on the objects in E which are 65 completely described by the adjacency binary matrix V_{μ} . 66

For a given neighborhood property (MST, GG or RNG), each measure u67 generates a topological structure on the objects in E which are totally described 68 by the adjacency binary matrix V_{μ} . 69

Reference Adjacency Matrices 22.2.1

Three topological factorial approaches are described in Abdesselam (2021) accord-71 ing to the type of variables considered, quantitative, qualitative or a mixture of both. 72 We treat here the case of a set of quantitative variables. 73

We assume that we have at our disposal a set $E = \{x^j; j = 1, \dots, p\}$ 74 of p quantitative variables and n individuals-objects. The objective here is to 75 analyze in a topological way, the structure of the correlations of the variables 76 considered (Abdesselam, 2021), from which the classification of individuals will 77 then be established. 78

We construct the reference adjacency matrix noted $V_{u_{\star}}$, in the case of quantitative 79 variables, from the correlation matrix. The expressions of the suitable adjacency 80 reference matrices in the case of qualitative variables or mixed variables are given 81 in Abdesselam (2021). 82

To examine the correlation structure between the variables, we look at the 83 significance of their linear correlation coefficient. This adjacency matrix can be

written as follows using the t-test or Student's t-test of the linear correlation 84 coefficient ρ of Bravais-Pearson: 85

Definition 22.1 For quantitative variables, the reference adjacency matrix $V_{u_{\star}}$ ⁸⁶ associated to reference measure u_{\star} is defined as: ⁸⁷

$$V_{u_{\star}}(x^k, x^l) = \begin{cases} 1 \text{ if } p\text{-value} = P[|T_{n-2}| > \text{ t-value}] \le \alpha ; \forall k, l = 1, p \\ 0 \text{ otherwise.} \end{cases}$$

Where p-value is the significance test of the linear correlation coefficient for 88 the two-sided test of the null and alternative hypotheses, $H_0: \rho(x^k, x^l) = 0$ vs. 89 $H_1: \rho(x^k, x^l) \neq 0.$ 90

Let T_{n-2} be a t-distributed random variable of Student with $\nu = n - 2$ degrees 91 of freedom. In this case, the null hypothesis is rejected with a p-value less or equal 92 a chosen α significance level, for example $\alpha = 5\%$. Using linear correlation test, 93 if the p-value be very small, it means that there is very small opportunity that null 94 hypothesis is correct, and consequently we can reject it. Statistical significance in 95 statistics is achieved when a p-value is less than a chosen significance level of α . 96 The p-value is the probability of obtaining results which acknowledge that the null 97 hypothesis is true.

22.2.2 Topological Equivalence

The different proximity measures given in Table 22.5 in appendix, can be compared 100 according to their topological equivalence in order to better visualize their similarities and their proximity with the reference measure u_{\star} .

The topological equivalence between two proximity measures u_i and u_j is 103 measured using the associated adjacency matrices V_{u_i} and V_{u_j} . It is based on the 104 following concordance index: 105

$$S(V_{u_i}, V_{u_j}) = \frac{\sum_{k=1}^r \sum_{l=1}^r \delta_{kl}(z^k, z^l)}{r^2}$$

with $\delta_{kl}(z^k, z^l) = \begin{cases} 1 \text{ if } V_{u_i}(z^k, z^l) = V_{u_j}(z^k, z^l) \\ 0 \text{ otherwise.} \end{cases}$

The greater this topological index is and tends to 1, the more the proximity 106 measures are equivalent. $S(V_{u_i}, V_{u_{\star}})$ measures the similarity and resemblance 107 between any proximity measure u_i and the reference measure u_{\star} . 108

22.2.3 Topological Analysis: Selective Review

Whatever the type of variable set being considered, the built reference adjacency 110 matrix $V_{u_{\star}}$ is associated with an unknown reference proximity measure u_{\star} . 111

The robustness depends on the α error risk chosen for the null hypothesis: 112 no linear correlation in the case of quantitative variables, or positive deviation 113 from independence in the case of qualitative variables, can be studied by setting 114 a minimum threshold in order to analyze the sensitivity of the results. Certainly the 115 numerical results will change, but probably not their interpretation. 116

We assume that we have at our disposal $\{x^k; k = 1, .., p\}$ a set of *p* homogeneous 117 quantitative variables measured on *n* individuals. We will use the following 118 notations: 119

- $X_{(n,p)}$ is the data matrix with *n* rows-individuals and *p* columns-variables,
- $V_{u_{\star}}$ is the symmetric adjacency matrix of order *p*, associated with the reference measure u_{\star} which best structures the correlations of the variables, 122
- $\widehat{X}_{(n,p)} = XV_{u_{\star}}$ is the projected data matrix with *n* individuals and *p* variables, 123
- M_p is the matrix of distances of order p in the space of individuals,
- $D_n = \frac{1}{n}I_n$ is the diagonal matrix of weights of order *n* in the space of variables. 125

We first analyze, in a topological way, the correlation structure of the variables using a Topological PCA, which consists of carrying out the standardized 127 PCA (Caillez and Pagès, 1976; Lebart, 1989) triplet (\hat{X}, M_p, D_n) of the 128 projected data matrix $\hat{X} = XV_{u_{\star}}$ and, for comparison, the duality diagram of the 129 Classical standardized PCA triplet (X, M_p, D_n) of the initial data matrix X. 130

We then proceed with a clustering of individuals based on the significant ¹³¹ principal components of the previous topological PCA. ¹³²

Figure 22.2 shows the duality diagram corresponding to the Topological PCA 133 according to the standardized PCA triplet (\hat{X}, M_p, D_n) of the projected data 134 matrix $\hat{X} = XV_{u_{\star}}$, and for comparison, the duality diagram of the Classical 135 standardized PCA triplet (X, M_p, D_n) of the initial data matrix X. 136

$$E = R^{p} \qquad \stackrel{t \widehat{X}}{\longleftarrow} \qquad F^{\star} = R^{n} \qquad E = R^{p} \qquad \stackrel{t X_{(n,p)}}{\longleftarrow} \qquad F^{\star} = R^{n}$$
$$M_{p} \downarrow \widehat{\uparrow} V \text{ Topological PCA } W \downarrow \widehat{\uparrow} D_{n} \qquad M_{p} \downarrow \widehat{\uparrow} V \text{ Classical PCA } W \downarrow \widehat{\uparrow} D_{n}$$
$$E^{\star} = R^{p} \qquad \longrightarrow \qquad F = R^{n}$$
$$\widehat{X}_{(n,p)} = XV_{u_{\star}} \qquad F^{\star} = R^{p} \qquad \longrightarrow \qquad F = R^{n}$$

Fig. 22.2 Duality diagrams

120

			Standard	Coefficient of		
Variable	Frequency	Mean	deviation (N)	variation (%)	Min	Max
Total RE production (TWH)	13	6.84	6.58	96.19	0.59	2.34
Total RE consumption (TWH)	13	3.70	1.87	50.67	2.18	7.06
Coverage RE consumption (%)	13	0.18	0.11	59.01	0.02	0.36
Hydroelectricity(%)	13	0.34	0.30	87.47	0.01	0.89
Solar electricity (%)	13	0.13	0.09	72.57	0.02	0.31
Wind electricity (%)	13	0.39	0.29	76.12	0.01	0.86
Biomass electricity (%)	13	0.15	0.19	130.54	0.01	0.79

 Table 22.1
 Summary statistics of renewable energy variables

Definition 22.2 TCI consist to perform a HAC based on to the Ward¹ (Ward, 137 1963), criterion on the significant factors of the standardized PCA of the triplet 138 (\hat{X}, M_p, D_n) .

We compare the proposed TCI to the most used method of individuals clustering, ¹⁴⁰ the Cluster procedure (SAS Institute Inc., 2016) of the SAS software. ¹⁴¹

Finally, the TCI approach and its dendrogram are easily programmable from the 142 PCA and HAC procedures of SAS, SPAD or R software. 143

22.3 Illustrative Example

The data used (Selectra, 2020) to illustrate the TCI approach describe the renewable 145 electricity (RE) of the 13 French regions in 2017, described by 7 quantitative 146 variables relating to RE. The growth of renewable energy in France is significant. 147 Some French regions have expertise in this area; however, the regions' profiles 148 appear to differ. 149

The objective is to specify regional disparities in terms of RE by applying 150 topological clustering to the French regions in order to identify which were the 151 country's greenest regions in 2017. Simple statistics relating to the variables are 152 displayed in Table 22.1.

Note that in this case of quantitative variables, it is considered that two positively 157 correlated variables are related and that two negatively correlated variables are 158 related, but remote, we will therefore take into account the sign of the correlation 159 between variables in the adjacency matrix. 160

AQ1 =

¹ Aggregation based on the criterion of the loss of minimal inertia.

Author's Proof

22 A Topological Approach of Clustering

Production	1							
Consumption	0.575	1						
Coverage	0.798	0.090	1			(111)	1 0 0	0 \
	(0.001)	(0.771)				110	0 0 0	0
Hydroelectricity	0.720	0.138	0.872	1		101	1 0 0	-1
	(0.006)	(0.653)	(0.000)		V_u	* = 1 0 1	1 0 -1	0
Solar	-0.272	-0.477	0.105	0.168	1	0 0 0	0 1 0	0
	(0.369)	(0.099)	(0.734)	(0.582)		0 0 0	$-1 \ 0 \ 1$	0
Wind	-0.408	-0.305	-0.524	-0.772	-0.395	1 0 0 -1	0 0 0	1 /
	(0.167)	(0.311)	(0.066)	(0.002)	(0.181)			
Biomass	-0.365	0.489	-0.609	-0.459	-0.149	-0.135 1		
	(0.220)	(0.090)	(0.027)	(0.114)	(0.627)	(0.660)		

Table 22.2 Correlation matrix (p)	-value)—Reference	adjacency	matrix	V_{u}
---	-------------------	-----------	--------	---------

Significance level: p-value $\leq \alpha = 5\%$

Table 22.3	Topological
equivalences	8

Rank	<i>u</i> _i	$S(V_{u_i}; V_{u_\star})$
1	Size distance	83.67%
2	Euclidean	75.51%
2	Minkowski	75.51%
2	Cosine dissimilarity	75.51%
2	Squared chord	75.51%
2	Doverlap measure	75.51%
2	Shape distance	75.51%
2	Lpower	75.51%
3	Tchebychev	71.43%
3	Pearson correlation	71.43%
4	Manhattan	67.35%
4	Normalized Euclidean	67.35%
4	Canberra	67.35%
4	Weighted Euclidean	67.35%
4	Gower's dissimilarity	67.35%

Table 22.3 summarizes the topological equivalence between the reference measure u_{\star} with the usual proximity measures for continuous data. Size Distance is the closest measure to the reference measure u_{\star} with a topological equivalence of 163 83.67%.

We first carry out a Topological PCA to identify the correlation structure of the variables, an HAC according to Ward's criterion is then applied on the significant principal components of this PCA of the projected data. We will gradually compare the results of the topological and classical PCA.

Figure 22.3 presents, for comparison on the first factorial plane, the correlations 169 between principal components-factors and the original variables. 170

We can see that these correlations are slightly different, as are the percentages of 171 the inertias explained on the first principal planes of Topological and Classic PCA. 172

Fig. 22.3 Topological and Classical PCA of the RE of the French regions

Topological	PCA		Completion	Eastan	
Eigenvalue	Proportion (%)	Cumulative (%)	ve (%)		-
4 052	57.89	57.89	Variable	FI	F2
1.032	26.11	82.00	Total RE production	0.867	-0.439
1.827	20.11	05.99	Total RE consumption	0.860	-0.452
0.858	12.25	96.24	Coverage RE consumption	0.966	0 189
0.246	3.52	99.76	Uvdroalaatriaity	0.074	0.10/
0.017	0.24	100.00	Hydroelectricity	0.974	0.164
0.000	0.00	100.00	Solar electricity	-0.329	0.715
0.000	0.00	100.00	Wind electricity	-0.637	-0.531
0.000	0.00	100.00	Biomass electricity	-0.405	-0.754
7.000	100.00	100.00		1	1
Classical P	TA				

 Table 22.4
 Topological and classical PCA—correlations variables and factors

Classical PO	CA		Completion	Destan	
Eigenvalue	Proportion (%)	Cumulative (%)	Correlation	Factor	
2 252	47.90	47.90	Variable	F1	F2
3.332	47.09	47.09	Total RE production	0.863	-0.355
1.912	27.51	75.20	Total RE consumption	0.274	-0.925
1.345	19.22	94.42	Coverage RE consumption	0.942	0.155
0.275	3.93	98.35	Hedre de staisite	0.050	0.105
0.098	1.40	99.75	Hydroelectricity	0.939	0.105
0.030	0.05	100.00	Solar electricity	0.103	0.694
0.017	0.25	100.00	Wind electricity	-0.700	0.084
0.000	0.00	100.00		0.475	0.001
7.000	100.00	100.00	Biomass electricity	-0.475	-0.636

Table 22.4 shows that the two first factors of the Topological PCA explain 173 57.89% and 26.11%, respectively, accounting for 83.99% of the total variation in 174 the data set; however, the two first factors of the Classical PCA add up to 75.20%. 175 Thus, the first two factors provide an adequate synthesis of the data, that is, of RE in 176 the French regions. We restrict the comparison to the first significant factorial axes. 177

The significant correlations between the initial variables and the principal factors 178 in the two analyses are quite different. 179

For comparison, Fig. 22.4 shows dendrograms of the Topological and Classical 180 clustering of the French regions according to their RE.

Note that the partitions chosen in 5 clusters are appreciably different, as much by 182 composition as by characterization. The percentage variance produced by the TCI 183 approach, $R^2 = 86.42\%$, is higher than that of the classic approach, $R^2 = 84.15\%$, 184 indicating that the clusters produced via the TCI approach are more homogeneous 185 than those generated by the Classical one. 186

Based on the TCI analysis, the Corse region alone constitutes the fourth cluster, 187 and the Nouvelle-Aquitaine region is found in the second cluster with the Grand-188 Est, Occitanie and Provence-Alpes-Côte-d'Azur (PACA) regions; however, in the 189

Fig. 22.4 Topological and classical dendrograms of the French regions

Classical clustering, these two regions—Corse and Nouvelle-Aquitaine—together 190 constitute the third cluster.

Figure 22.5 summarizes the significant profiles (+) and anti-profiles (-) of the two 192 typologies; with a risk of error less than or equal to 5%, they are quite different.

The first cluster produced via the TCI approach, consisting of a single region, 194 Auvergne-Rhônes-Alpes (AURA), is characterized by high share of hydroelectricity, a high level of coverage of regional consumption, and high RE production and consumption. 197

The second cluster—which groups together the four regions of Grand-Est, Occitanie, Provence-Alpes-Côte-d'Azur (PACA) and Nouvelle-Aquitaine—is considered a homogeneous cluster, which means that none of the seven RE characteristics differ significantly from the average of these characteristics across all regions. This cluster can therefore be considered to reflect the typical picture of RE in France.

Cluster 3, which consists of six regions, is characterized by a high degree of wind 203 energy, a low degree of hydroelectricity, low coverage of regional consumption, and 204 low production and consumption of RE compared to the national average. 205

Cluster 4, represented by the Corse region, is characterized by a high share of 206 solar energy and low production and consumption of RE. 207

The last class, represented by the Ile-de-France region, is characterized by a high 208 share of biomass energy. Regarding the other types of RE, their share is close to the 209 national average. 210

22.4 Conclusion

Author's Proof

This paper proposes a new topological approach to the clustering of individuals ²¹² which can enrich classical data analysis methods within the framework of the ²¹³ clustering of objects. The results of the topological clustering approach, based on ²¹⁴ the notion of a neighborhood graph, are as good—or even better, according to the R- ²¹⁵ squared results—than the existing classical method. The TCI approach is be easily ²¹⁶ programmable from the PCA and HAC procedures of SAS, SPAD or R software. ²¹⁷ Future work will involve extending this topological approach to other methods of ²¹⁸ data analysis, in particular in the context of evolutionary data analysis. ²¹⁹

Fig. 22.5 Characterization of TCI and classical clusters

Appendix

AQ2 =

See Table 22.5.

Tabla	22.5	Some provimit	measures for	continuous	and hinary data
Table	22.3	Some proximity	y measures for	continuous	and binary data

Measure	Distance and dissimilarity for continuous data
Euclidean	$u_{Euc}(x, y) = \sqrt{\sum_{j=1}^{p} (x_j - y_j)^2}$
Manhattan	$u_{Man}(x, y) = \sum_{j=1}^{p} x_j - y_j $
Minkowski	$u_{Min_{\gamma}}(x, y) = (\sum_{j=1}^{p} x_j - y_j ^{\gamma})^{\frac{1}{\gamma}}$
Tchebychev	$u_{Tch}(x, y) = \max_{1 \le j \le p} x_j - y_j $
Normalized Euclidean	$u_{NE}(x, y) = \sqrt{\sum_{j=1}^{p} \frac{1}{\sigma_j^2} [(x_j - \overline{x}_j) - (y_j - \overline{y}_j)]^2}$
Cosine dissimilarity	$u_{Cos}(x, y) = 1 - \frac{\sum_{j=1}^{p} x_j y_j}{\sqrt{\sum_{j=1}^{p} x_j^2} \sqrt{\sum_{j=1}^{p} y_j^2}} = 1 - \frac{\langle x, y \rangle}{\ x\ \ y\ }$
Canberra	$u_{Can}(x, y) = \sum_{j=1}^{p} \frac{ x_j - y_j }{ x_j + y_j }$
Pearson correlation	$u_{Cor}(x, y) = 1 - \frac{(\sum_{j=1}^{p} (x_j - \overline{x})(y_j - \overline{y}))^2}{\sum_{j=1}^{p} (x_j - \overline{x})^2 \sum_{j=1}^{p} (y_j - \overline{y})^2} = 1 - \frac{(\langle x - \overline{x}, y - \overline{y} \rangle)^2}{\ x - \overline{x}\ ^2 \ y - \overline{y}\ ^2}$
Squared chord	$u_{Cho}(x, y) = \sum_{j=1}^{p} (\sqrt{x_j} - \sqrt{y_j})^2$
Doverlap measure	$u_{Dev}(x, y) = max(\sum_{j=1}^{p} x_j, \sum_{j=1}^{p} y_j) - \sum_{j=1}^{p} min(x_j, y_j)$
Weighted Euclidean	$u_{WEu}(x, y) = \sqrt{\sum_{j=1}^{p} \alpha_j (x_j - y_j)^2}$
Gower's dissimilarity	$u_{Gow}(x, y) = \frac{1}{p} \sum_{j=1}^{p} x_j - y_j $
Shape distance	$u_{Sha}(x, y) = \sqrt{\sum_{j=1}^{p} [(x_j - \overline{x}_j) - (y_j - \overline{y}_j)]^2}$
Size distance	$u_{Siz}(x, y) = \sum_{j=1}^{p} (x_j - y_j) $

Where, *p* is the dimension of space, $x = (x_j)_{j=1,...,p}$ and $y = (y_j)_{j=1,...,p}$ two points in $\mathbb{R}^p, \overline{x}_j$ the mean, σ_j the Standard deviation, $\alpha_j = \frac{1}{\sigma_j^2}$ and $\gamma > 0$ 220

Measure	Similarity and dissimilarity for binary data	
Jaccard	$s_1 = \frac{a}{a+b+c}$	$u_1 = 1 - s_1$
Dice, Czekanowski	$s_2 = \frac{2a}{2a+b+c}$	$u_2 = 1 - s_2$
Kulczynski	$s_3 = \frac{1}{2}\left(\frac{a}{a+b} + \frac{a}{a+c}\right)$	$u_3 = 1 - s_3$
Driver, Kroeber and Ochiai	$s_4 = \frac{a}{\sqrt{(a+b)(a+c)}}$	$u_4 = 1 - s_4$
Sokal and Sneath 2	$s_5 = \frac{a}{a+2(b+c)}$	$u_5 = 1 - s_5$
Braun-Blanquet	$s_6 = \frac{a}{max(a+b,a+c)}$	$u_6 = 1 - s_6$
Simpson	$s_7 = \frac{a}{\min(a+b,a+c)}$	$u_7 = 1 - s_7$
Kendall, Sokal-Michener	$s_8 = \frac{a+d}{a+b+c+d}$	$u_8 = 1 - s_8$
Russell and Rao	$s_9 = \frac{a}{a+b+c+d}$	$u_9 = 1 - s_9$
Rogers and Tanimoto	$s_{10} = \frac{a+d}{a+2(b+c)+d}$	$u_{10} = 1 - s_{10}$
Pearson ϕ	$s_{11} = \frac{ad-bc}{\sqrt{(a+b)(a+c)(d+b)(d+c)}}$	$u_{11} = \frac{1-s_{11}}{2}$
Hamann	$s_{12} = \frac{a+d-b-c}{a+b+c+d}$	$u_{12} = \frac{1-s_{12}}{2}$
Michael	$s_{13} = \frac{4(ad-bc)}{(a+d)^2 + (b+c)^2}$	$u_{13} = \frac{1-s_{13}}{2}$
Baroni, Urbani and Buser	$s_{14} = \frac{a + \sqrt{ad}}{a + b + c + \sqrt{ad}}$	$u_{14} = 1 - s_{14}$
Yule Q	$s_{15} = \frac{ad - bc}{ad + bc}$	$u_{15} = \frac{1-s_{15}}{2}$
Yule Y	$s_{16} = \frac{\sqrt{ad} - \sqrt{bc}}{\sqrt{ad} + \sqrt{bc}}$	$u_{16} = \frac{1-s_{16}}{2}$
Sokal and Sneath 4	$s_{17} = \frac{1}{4}(\frac{a}{a+b} + \frac{a}{a+c} + \frac{d}{d+b} + \frac{d}{d+c})$	$u_{17} = 1 - s_{17}$
Gower and Legendre	$s_{18} = \frac{a+d}{a+\frac{(b+c)}{2}+d}$	$u_{18} = 1 - s_{18}$
Sokal and Sneath 1	$s_{19} = \frac{2(a+d)}{2(a+d)+b+c}$	$u_{19} = 1 - s_{19}$

Where, $a = |X \cap Y|$ is the number of attributes common to both points x and y, b = |X - Y| is the number of attributes present in x but not in y, c = |Y - X| is the number of attributes present in y but not in x and $d = |\overline{X} \cap \overline{Y}|$ is the number of attributes in neither x or y and |. | the cardinality of a set

References

- Abdesselam, R. (2019). A topological multiple correspondence analysis. *Journal of Mathematics* 223 and Statistical Science, 5(8), 175–192. , ISSN 2411-2518, Science Signpost Publishing Inc., 224 USA. 225
- Abdesselam, R. (2019). A topological discriminant analysis. In: *Data analysis and applications 2*, 226 *utilization of results in Europe and other topics* (Vol. 3, Part 4, pp. 167–178). Wiley.
- Abdesselam, R. (2020). Selection of proximity measures for a topological correspondence analysis. 228
 In: Data analysis and applications 3, Computational, classification, financial, statistical and 229
 stochastic methods, Vol. 5, Part 2. Classification data analysis and methods (pp. 103–120). 230
 Wiley. 231
- Abdesselam, R. (2021). A topological clustering of variables. *Journal of Mathematics and System* 232 *Science*, 11(2), 1–17. David Publishing Company, USA.

Abdesselam, R. (2021). A topological principal component analysis. *International Journal of Data* 234
 Science and Analysis, 7(2), 20–31. Science Publishing Group, USA. 235

R. Abdesselam

Batagelj, V., & Bren, M. (1995). Comparing resemblance measures. <i>Journal of Classification</i> , 12, 73–90	236
Benzécri, I. P. (1976). L'Analyse des Données. Tome 1: La Taxinomie. Tome 2: L'analyse des	237
correspondances (2ème édition). Paris: Dunod.	239
Caillez, F., & Pagès, J. P. (1976). Introduction à l'Analyse des données, S.M.A.S.H., Paris.	240
Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. The Journal of	241
Machine Learning Research, 7, 1–30.	242
Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193-218.	243
Kim, J. H., & Lee, S.: Tail bound for the minimal spanning tree of a complete graph. Statistics &	244
Probability Letters, 64(4), 425–430.	245
Lebart, L. (1989). Stratégies du traitement des données d'enquêtes. La Revue de MODULAD, 3,	246
21–29.	247
Lesot, M. J., Rifqi, M., & Benhadda, H. (2009). Similarity measures for binary and numerical data:	248
a survey. International Journal of Knowledge Engineering and Soft Data Paradigms, 1(1), 63–	249
84.	250
Mantel, N. (1967). A technique of disease clustering and a generalized regression approach.	251
Cancer Research, 27, 209–220.	252
(moth AT) or Viu 2201 00054 Machine Learning	253
(Intalli, AI) at AIV. 2201.09004, Machine Leanning.	254
raik, J. C., Shini, H., & Choi, D. K. (2000). Empire Gabrier graph for miding heighbors in a point set and its application to normal vector estimation. <i>Computer Aided Design</i> 38(6), 619–626.	200
Flsevier	257
Rifai, M., Detvniecki, M., & Bouchon-Meunier, B. (2003). Discrimination power of measures of	258
resemblance. In IFSA'03 Citeseer.	259
SAS Institute Inc. SAS/STAT software, the cluster procedure. https://support.sas.com/	260
documentation/onlinedoc/stat/142/cluster.pdf	261
Schneider, J. W., & Borlund, P. (2007). Matrix comparison, Part 1: Motivation and important issues	262
for measuring the resemblance between proximity measures or ordination results. Journal of	263
the American Society for Information Science and Technology, 58(11), 1586–1595.	264
Schneider, J. W., & Borlund, P. (2007). Matrix comparison, Part 2: Measuring the resemblance	265
between proximity measures or ordination results by use of the Mantel and Procrustes statistics.	266
<i>Journal of the American Society for Information Science and Technology, 58</i> (11), 1596–1609.	267
Selectra. (2020). Electricité renouvelable: quelles sont les régions les plus vertes de France? https://	268
selectra.info/energie/actualites/expert/electricite-renouvelable-regions-plus-vertes-france	269
Ioussaint, G. I. (1980). The relative neighbourhood graph of a finite planar set. Pattern Recogni-	270
<i>Hon, 12</i> (4), 201–208.	271
Amaziagn Statistical Association JSTOP 58(201) 226 244	272
Warrans M. I. (2008). Bounds of resemblance measures for binary (presence/absence) variables	273
<i>Journal of Classification</i> 25(2) 195–208 Springer	275
Zighed D. Abdesselam R. & Hadgu A (2012) Topological comparisons of proximity measures	276
In PN. Tan et al. (Eds.). In the 16th PAKDD 2012 Conference (np. 379–391). Part I. LNAI	277
7301 Berlin Heidelberg: Springer-Verlag	278
7 JOI. Denni Heidelberg, Springer-verlag.	210

AUTHOR QUERIES

- AQ1. Please provide the significance for given italic values in Tables "22.2, 22.3, and 22.4".
- AQ2. As per style, a citation for Table 8.5 is inserted in the appendix section. Kindly check and confirm.
- AQ3. Refs. Benzécri (1976); Demsar (2006); Hubert and Arabie (1985); Mantel (1967); Rifqi et al. (2003); Schneider and Borlund (2007,?); Warrens (2008) are not cited in the text. Please provide the citations or delete them from the list.

horected