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Chapter 22 1

A Topological Approach of Clustering 2

Rafik Abdesselam 3

22.1 Introduction 4

The objective of this article is to propose a topological method of data analysis in the 5

context of clustering. The proposed approach, Topological Clustering of Individuals 6

(TCI) is different from those that already exist and with which it is compared. There 7

are approaches specifically devoted to the clustering of individuals, for example, the 8

Cluster procedure implemented in SAS software, but as far as we know, none of 9

these approaches has been proposed in a topological context. 10

Proximity measures play an important role in many areas of data analysis (Zighed 11

et al., 2012; Batagelj and Bren, 1995; Lesot et al., 2009). The results of any operation 12

involving structuring, clustering or classifying objects are strongly dependent on the 13

proximity measure chosen. 14

This study proposes a method for the topological clustering of individuals 15

whatever type of variable is being considered: quantitative, qualitative or a mixture 16

of both. The eventual associations or correlations between the variables partly 17

depends on the database being used and the results can change according to the 18

selected proximity measure. A proximity measure is a function which measures the 19

similarity or dissimilarity between two objects or variables within a set. 20

Several topological data analysis studies have been proposed both in the con- 21

text of factorial analyses (discriminant analysis (Abdesselam, 2019), simple and 22

multiple correspondence analyses (Abdesselam, 2020, 2019), principal component 23

analysis (Abdesselam, 2021)) and in the context of clustering of variables (Abdes- 24
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selam, 2021), clustering of individuals (Panagopoulos, 2022) and this proposed TCI 25

approach. 26

This paper is organized as follows. In Sect. 22.2, we briefly recall the basic 27

notion of neighborhood graphs, we define and show how to construct an adjacency 28

matrix associated with a proximity measure within the framework of the analysis 29

of the correlation structure of a set of quantitative variables, and we present the 30

principles of TCI according to continuous data. This is illustrated in Sect. 22.3 using 31

an example based on real data. The TCI results are compared with those of the well- 32

known classical clustering of individuals. Finally, Sect. 22.4 presents the concluding 33

remarks on this work. 34

22.2 Topological Context 35

Topological data analysis is an approach based on the concept of the neighborhood 36

graph. The basic idea is actually quite simple: for a given proximity measure for 37

continuous or binary data and for a chosen topological structure, we can match a 38

topological graph induced on the set of objects. 39

In the case of continuous data, we consider .E = {x1, · · · , xj , · · · , xp}, a set of 40

p quantitative variables. We can see in Abdesselam (2021) cases of qualitative or 41

even mixed variables. 42

We can, by means of a proximity measure u, define a neighborhood relationship, 43

.Vu, to be a binary relationship based on .E × E. There are many possibilities for 44

building this neighborhood binary relationship. 45

Thus, for a given proximity measure .u, we can build a neighborhood graph on 46

E, where the vertices are the variables and the edges are defined by a property of 47

the neighborhood relationship. 48

Many definitions are possible to build this binary neighborhood relationship. One 49

can choose the Minimal Spanning Tree (MST) (Kim and Lee, 2003), the Gabriel 50

Graph (GG) (Park et al., 2006) or, as is the case here, the Relative Neighborhood 51

Graph (RNG) (Toussaint, 1980). 52

For any given proximity measure u, for continuous or binary data listed in 53

Table 22.5 given in the Appendix, we can construct the associated adjacency binary 54

symmetric matrix .Vu of order p, where, all pairs of neighboring variables in E 55

satisfy the following RNG property: 56

.Vu(x
k , xl) =

⎧
⎨

⎩

1 if u(xk , xl) ≤ max[u(xk , xt ), u(xt , xl)] ;
∀xk, xl, xt ∈ E, xt �= xk and xt �= xl

0 otherwise.

This means that if two variables .xk and .xl which verify the RNG property are 57

connected by an edge, the vertices .xk and .xl are neighbors. 58
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Fig. 22.1 Data—RNG structure—Euclidean distance—Associated adjacency matrix
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Figure 22.1 shows a simple illustrative example in .R2 of a set of eight quantitative 59

variables .{x1, · · · , x2, · · · , x8}, that verify the structure of the RNG graph with 60

Euclidean distance as proximity measure: .u(xk , xl) =
√∑2

j=1(x
k
j − xl

j )
2. 61

For example, for the first and the fourth variables, .Vu(x
1, x4) = 1, it means 62

that on the geometrical plane, the hyper-Lunula (intersection between the two 63

hyperspheres centered on the two variables .x1 and .x4) is empty. 64

This generates a topological structure based on the objects in E which are 65

completely described by the adjacency binary matrix .Vu. 66

For a given neighborhood property (MST, GG or RNG), each measure u 67

generates a topological structure on the objects in E which are totally described 68

by the adjacency binary matrix .Vu. 69

22.2.1 Reference Adjacency Matrices 70

Three topological factorial approaches are described in Abdesselam (2021) accord- 71

ing to the type of variables considered, quantitative, qualitative or a mixture of both. 72

We treat here the case of a set of quantitative variables. 73

We assume that we have at our disposal a set .E = {xj ; j = 1, · · · , p} 74

of p quantitative variables and n individuals-objects. The objective here is to 75

analyze in a topological way, the structure of the correlations of the variables 76

considered (Abdesselam, 2021), from which the classification of individuals will 77

then be established. 78

We construct the reference adjacency matrix noted .Vu� , in the case of quantitative 79

variables, from the correlation matrix. The expressions of the suitable adjacency 80

reference matrices in the case of qualitative variables or mixed variables are given 81

in Abdesselam (2021). 82

To examine the correlation structure between the variables, we look at the 83

significance of their linear correlation coefficient. This adjacency matrix can be



R. Abdesselam

written as follows using the t-test or Student’s t-test of the linear correlation 84

coefficient .ρ of Bravais-Pearson: 85

Definition 22.1 For quantitative variables, the reference adjacency matrix .Vu� 86

associated to reference measure .u� is defined as: 87

. Vu�(x
k, xl) =

{
1 if p-value = P [ | Tn−2 | > t-value ] ≤ α ; ∀k, l = 1, p

0 otherwise.

Where p-value is the significance test of the linear correlation coefficient for 88

the two-sided test of the null and alternative hypotheses, .H0 : ρ(xk , xl) = 0 vs. 89

.H1 : ρ(xk , xl) �= 0. 90

Let .Tn−2 be a t-distributed random variable of Student with .ν = n − 2 degrees 91

of freedom. In this case, the null hypothesis is rejected with a p-value less or equal 92

a chosen .α significance level, for example .α = 5%. Using linear correlation test, 93

if the p-value be very small, it means that there is very small opportunity that null 94

hypothesis is correct, and consequently we can reject it. Statistical significance in 95

statistics is achieved when a p-value is less than a chosen significance level of .α. 96

The p-value is the probability of obtaining results which acknowledge that the null 97

hypothesis is true. 98

22.2.2 Topological Equivalence 99

The different proximity measures given in Table 22.5 in appendix, can be compared 100

according to their topological equivalence in order to better visualize their similari- 101

ties and their proximity with the reference measure .u�. 102

The topological equivalence between two proximity measures .ui and .uj is 103

measured using the associated adjacency matrices .Vui and .Vuj . It is based on the 104

following concordance index: 105

.S(Vui , Vuj ) =
∑r

k=1
∑r

l=1 δkl(z
k, zl)

r2

with δkl(z
k, zl) =

{ 1 if Vui (z
k, zl) = Vuj (z

k, zl)

0 otherwise.

The greater this topological index is and tends to 1, the more the proximity 106

measures are equivalent. .S(Vui , Vu�) measures the similarity and resemblance 107

between any proximity measure .ui and the reference measure .u�. 108



22 A Topological Approach of Clustering

22.2.3 Topological Analysis: Selective Review 109

Whatever the type of variable set being considered, the built reference adjacency 110

matrix .Vu� is associated with an unknown reference proximity measure .u�. 111

The robustness depends on the .α error risk chosen for the null hypothesis: 112

no linear correlation in the case of quantitative variables, or positive deviation 113

from independence in the case of qualitative variables, can be studied by setting 114

a minimum threshold in order to analyze the sensitivity of the results. Certainly the 115

numerical results will change, but probably not their interpretation. 116

We assume that we have at our disposal .{xk; k = 1, .., p} a set of p homogeneous 117

quantitative variables measured on n individuals. We will use the following 118

notations: 119

– .X(n,p) is the data matrix with n rows-individuals and p columns-variables, 120

– .Vu� is the symmetric adjacency matrix of order p, associated with the reference 121

measure .u� which best structures the correlations of the variables, 122

– .X̂(n,p) = XVu� is the projected data matrix with n individuals and p variables, 123

– .Mp is the matrix of distances of order p in the space of individuals, 124

– .Dn = 1
n
In is the diagonal matrix of weights of order n in the space of variables. 125

We first analyze, in a topological way, the correlation structure of the vari- 126

ables using a Topological PCA, which consists of carrying out the standardized 127

PCA (Caillez and Pagès, 1976; Lebart, 1989) triplet . ( X̂ , Mp , Dn ) of the 128

projected data matrix .X̂ = XVu� and, for comparison, the duality diagram of the 129

Classical standardized PCA triplet . ( X , Mp , Dn ) of the initial data matrix X. 130

We then proceed with a clustering of individuals based on the significant 131

principal components of the previous topological PCA. 132

Figure 22.2 shows the duality diagram corresponding to the Topological PCA 133

according to the standardized PCA triplet . ( X̂ , Mp , Dn ) of the projected data 134

matrix .X̂ = XVu� , and for comparison, the duality diagram of the Classical 135

standardized PCA triplet . ( X , Mp , Dn ) of the initial data matrix X. 136

Fig. 22.2 Duality diagrams
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Table 22.1 Summary statistics of renewable energy variables

Standard Coefficient of

Variable Frequency Mean deviation (N) variation .(%) Min Max

Total RE production (TWH) 13 6.84 6.58 96.19 0.59 2.34

Total RE consumption (TWH) 13 3.70 1.87 50.67 2.18 7.06

Coverage RE consumption (.%) 13 0.18 0.11 59.01 0.02 0.36

Hydroelectricity(.%) 13 0.34 0.30 87.47 0.01 0.89

Solar electricity (.%) 13 0.13 0.09 72.57 0.02 0.31

Wind electricity (.%) 13 0.39 0.29 76.12 0.01 0.86

Biomass electricity (.%) 13 0.15 0.19 130.54 0.01 0.79

Definition 22.2 TCI consist to perform a HAC based on to the Ward1 (Ward, 137

1963), criterion on the significant factors of the standardized PCA of the triplet 138

.(X̂,Mp,Dn). 139

We compare the proposed TCI to the most used method of individuals clustering, 140

the Cluster procedure (SAS Institute Inc., 2016) of the SAS software. 141

Finally, the TCI approach and its dendrogram are easily programmable from the 142

PCA and HAC procedures of SAS, SPAD or R software. 143

22.3 Illustrative Example 144

The data used (Selectra, 2020) to illustrate the TCI approach describe the renewable 145

electricity (RE) of the 13 French regions in 2017, described by 7 quantitative 146

variables relating to RE. The growth of renewable energy in France is significant. 147

Some French regions have expertise in this area; however, the regions’ profiles 148

appear to differ. 149

The objective is to specify regional disparities in terms of RE by applying 150

topological clustering to the French regions in order to identify which were the 151

country’s greenest regions in 2017. Simple statistics relating to the variables are 152

displayed in Table 22.1. 153AQ1
The adjacency matrix .Vu� associated to the proximity measure .u� adapted to 154

the data considered, is build from the correlations matrix Table 22.2 according to 155

Definition 22.1. 156

Note that in this case of quantitative variables, it is considered that two positively 157

correlated variables are related and that two negatively correlated variables are 158

related, but remote, we will therefore take into account the sign of the correlation 159

between variables in the adjacency matrix. 160

1 Aggregation based on the criterion of the loss of minimal inertia.

rabdesse
Note
There are no values in italics in the tables “22.2, 22.3 and 22.4”.
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Table 22.2 Correlation matrix (p-value)—Reference adjacency matrix .Vu�

Production 1

Consumption 0.575 1
(0.040)

Coverage 0.798 0.090 1
(0.001) (0.771)

Hydroelectricity 0.720 0.138 0.872 1
(0.006) (0.653) (0.000)

Solar –0.272 –0.477 0.105 0.168 1
(0.369) (0.099) (0.734) (0.582)

Wind –0.408 –0.305 –0.524 –0.772 –0.395 1
(0.167) (0.311) (0.066) (0.002) (0.181)

Biomass –0.365 0.489 –0.609 –0.459 –0.149 –0.135 1
(0.220) (0.090) (0.027) (0.114) (0.627) (0.660)

Vu∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 0
1 1 0 0 0 0 0
1 0 1 1 0 0 −1
1 0 1 1 0 −1 0
0 0 0 0 1 0 0
0 0 0 −1 0 1 0
0 0 −1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Significance level: p−value ≤ α = 5%

Table 22.3 Topological
equivalences

Rank .ui .S(Vui
; Vu�

)

1 Size distance 83.67%

2 Euclidean .75.51%

2 Minkowski .75.51%

2 Cosine dissimilarity .75.51%

2 Squared chord .75.51%

2 Doverlap measure .75.51%

2 Shape distance .75.51%

2 Lpower .75.51%

3 Tchebychev .71.43%

3 Pearson correlation .71.43%

4 Manhattan .67.35%

4 Normalized Euclidean .67.35%

4 Canberra .67.35%

4 Weighted Euclidean .67.35%

4 Gower’s dissimilarity .67.35%

Table 22.3 summarizes the topological equivalence between the reference mea- 161

sure .u� with the usual proximity measures for continuous data. Size Distance is 162

the closest measure to the reference measure .u� with a topological equivalence of 163

.83.67%. 164

We first carry out a Topological PCA to identify the correlation structure of the 165

variables, an HAC according to Ward’s criterion is then applied on the significant 166

principal components of this PCA of the projected data. We will gradually compare 167

the results of the topological and classical PCA. 168

Figure 22.3 presents, for comparison on the first factorial plane, the correlations 169

between principal components-factors and the original variables. 170

We can see that these correlations are slightly different, as are the percentages of 171

the inertias explained on the first principal planes of Topological and Classic PCA. 172
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Fig. 22.3 Topological and Classical PCA of the RE of the French regions

Table 22.4 Topological and classical PCA—correlations variables and factors

Topological PCA

Eigenvalue Proportion .(%) Cumulative .(%)

4.052 57.89 57.89

1.827 26.11 83.99

0.858 12.25 96.24

0.246 3.52 99.76

0.017 0.24 100.00

0.000 0.00 100.00

0.000 0.00 100.00

7.000 100.00 100.00

Correlation Factor

Variable F1 F2

Total RE production 0.867 .−0.439

Total RE consumption 0.860 .−0.452

Coverage RE consumption 0.966 0.189

Hydroelectricity 0.974 0.184

Solar electricity .−0.329 0.715

Wind electricity .−0.637 .−0.531

Biomass electricity .−0.405 .−0.754

Classical PCA

Eigenvalue Proportion .(%) Cumulative .(%)

3.352 47.89 47.89

1.912 27.31 75.20

1.345 19.22 94.42

0.275 3.93 98.35

0.098 1.40 99.75

0.017 0.25 100.00

0.000 0.00 100.00

7.000 100.00 100.00

Correlation Factor

Variable F1 F2

Total RE production 0.863 .−0.355

Total RE consumption 0.274 .−0.925

Coverage RE consumption 0.942 0.155

Hydroelectricity 0.959 0.105

Solar electricity 0.103 0.694

Wind electricity .−0.700 0.084

Biomass electricity .−0.475 .−0.636

Table 22.4 shows that the two first factors of the Topological PCA explain 173

.57.89% and .26.11%, respectively, accounting for .83.99% of the total variation in 174

the data set; however, the two first factors of the Classical PCA add up to .75.20%. 175

Thus, the first two factors provide an adequate synthesis of the data, that is, of RE in 176

the French regions. We restrict the comparison to the first significant factorial axes. 177
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The significant correlations between the initial variables and the principal factors 178

in the two analyses are quite different. 179

For comparison, Fig. 22.4 shows dendrograms of the Topological and Classical 180

clustering of the French regions according to their RE. 181

Note that the partitions chosen in 5 clusters are appreciably different, as much by 182

composition as by characterization. The percentage variance produced by the TCI 183

approach, .R2 = 86.42%, is higher than that of the classic approach, .R2 = 84.15%, 184

indicating that the clusters produced via the TCI approach are more homogeneous 185

than those generated by the Classical one. 186

Based on the TCI analysis, the Corse region alone constitutes the fourth cluster, 187

and the Nouvelle-Aquitaine region is found in the second cluster with the Grand- 188

Est, Occitanie and Provence-Alpes-Côte-d’Azur (PACA) regions; however, in the 189

Fig. 22.4 Topological and classical dendrograms of the French regions
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Classical clustering, these two regions—Corse and Nouvelle-Aquitaine—together 190

constitute the third cluster. 191

Figure 22.5 summarizes the significant profiles (+) and anti-profiles (-) of the two 192

typologies; with a risk of error less than or equal to .5%, they are quite different. 193

The first cluster produced via the TCI approach, consisting of a single region, 194

Auvergne-Rhônes-Alpes (AURA), is characterized by high share of hydroelectric- 195

ity, a high level of coverage of regional consumption, and high RE production and 196

consumption. 197

The second cluster—which groups together the four regions of Grand-Est, Occ- 198

itanie, Provence-Alpes-Côte-d’Azur (PACA) and Nouvelle-Aquitaine—is consid- 199

ered a homogeneous cluster, which means that none of the seven RE characteristics 200

differ significantly from the average of these characteristics across all regions. This 201

cluster can therefore be considered to reflect the typical picture of RE in France. 202

Cluster 3, which consists of six regions, is characterized by a high degree of wind 203

energy, a low degree of hydroelectricity, low coverage of regional consumption, and 204

low production and consumption of RE compared to the national average. 205

Cluster 4, represented by the Corse region, is characterized by a high share of 206

solar energy and low production and consumption of RE. 207

The last class, represented by the Ile-de-France region, is characterized by a high 208

share of biomass energy. Regarding the other types of RE, their share is close to the 209

national average. 210

22.4 Conclusion 211

This paper proposes a new topological approach to the clustering of individuals 212

which can enrich classical data analysis methods within the framework of the 213

clustering of objects. The results of the topological clustering approach, based on 214

the notion of a neighborhood graph, are as good—or even better, according to the R- 215

squared results—than the existing classical method. The TCI approach is be easily 216

programmable from the PCA and HAC procedures of SAS, SPAD or R software. 217

Future work will involve extending this topological approach to other methods of 218

data analysis, in particular in the context of evolutionary data analysis. 219
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Fig. 22.5 Characterization of TCI and classical clusters
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Appendix 220

See Table 22.5.AQ2 221

Table 22.5 Some proximity measures for continuous and binary data

Measure Distance and dissimilarity for continuous data

Euclidean .uEuc(x, y) =
√∑p

j=1(xj − yj )
2

Manhattan .uMan(x, y) = ∑p

j=1 |xj − yj |
Minkowski .uMinγ

(x, y) = (
∑p

j=1 |xj − yj |γ )
1
γ

Tchebychev .uT ch(x, y) = max1≤j≤p |xj − yj |
Normalized Euclidean .uNE(x, y) =

√
∑p

j=1
1
σ 2

j

[(xj − xj ) − (yj − yj )]2

Cosine dissimilarity .uCos(x, y) = 1 −
∑p

j=1 xj yj
√∑p

j=1 x2
j

√∑p
j=1 y2

j

= 1 − <x,y>
‖x‖‖y‖

Canberra .uCan(x, y) = ∑p

j=1
|xj −yj |
|xj |+|yj |

Pearson correlation .uCor (x, y) = 1 − (
∑p

j=1(xj −x)(yj −y))2

∑p
j=1(xj−x)2

∑p
j=1(yj −y)2 = 1 − (<x−x,y−y>)2

‖x−x‖2‖y−y‖2

Squared chord .uCho(x, y) = ∑p

j=1(
√

xj − √
yj )2

Doverlap measure .uDev(x, y) = max(
∑p

j=1 xj ,
∑p

j=1 yj ) − ∑p

j=1 min(xj , yj )

Weighted Euclidean .uWEu(x, y) =
√∑p

j=1 αj (xj − yj )
2

Gower’s dissimilarity .uGow(x, y) = 1
p

∑p

j=1 | xj − yj |
Shape distance .uSha(x, y) =

√∑p

j=1[(xj − xj ) − (yj − yj )]2

Size distance .uSiz(x, y) =| ∑p

j=1(xj − yj ) |
Where, p is the dimension of space, .x = (xj )j=1,...,p and .y = (yj )j=1,...,p two points in .Rp , .xj

the mean, .σj the Standard deviation, .αj = 1
σ 2

j

and .γ > 0

rabdesse
Note
Two explanatory quotations are well inserted in the middle and at the end of Table 22.5 in the appendix section. I confirm.
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Measure Similarity and dissimilarity for binary data

Jaccard .s1 = a
a+b+c

.u1 = 1 − s1

Dice, Czekanowski .s2 = 2a
2a+b+c

.u2 = 1 − s2

Kulczynski .s3 = 1
2 ( a

a+b
+ a

a+c
) .u3 = 1 − s3

Driver, Kroeber and Ochiai .s4 = a√
(a+b)(a+c)

.u4 = 1 − s4

Sokal and Sneath 2 .s5 = a
a+2(b+c)

.u5 = 1 − s5

Braun-Blanquet .s6 = a
max(a+b,a+c)

.u6 = 1 − s6

Simpson .s7 = a
min(a+b,a+c)

.u7 = 1 − s7

Kendall, Sokal-Michener .s8 = a+d
a+b+c+d

.u8 = 1 − s8

Russell and Rao .s9 = a
a+b+c+d

.u9 = 1 − s9

Rogers and Tanimoto .s10 = a+d
a+2(b+c)+d

.u10 = 1 − s10

Pearson .φ .s11 = ad−bc√
(a+b)(a+c)(d+b)(d+c)

.u11 = 1−s11
2

Hamann .s12 = a+d−b−c
a+b+c+d

.u12 = 1−s12
2

Michael .s13 = 4(ad−bc)

(a+d)2+(b+c)2 .u13 = 1−s13
2

Baroni, Urbani and Buser .s14 = a+√
ad

a+b+c+√
ad

.u14 = 1 − s14

Yule Q .s15 = ad−bc
ad+bc

.u15 = 1−s15
2

Yule Y .s16 =
√

ad−√
bc√

ad+√
bc

.u16 = 1−s16
2

Sokal and Sneath 4 .s17 = 1
4 ( a

a+b
+ a

a+c
+ d

d+b
+ d

d+c
) .u17 = 1 − s17

Gower and Legendre .s18 = a+d

a+ (b+c)
2 +d

.u18 = 1 − s18

Sokal and Sneath 1 .s19 = 2(a+d)
2(a+d)+b+c

.u19 = 1 − s19

Where, .a =| X ∩ Y | is the number of attributes common to both points x and y, .b =| X − Y |
is the number of attributes present in x but not in y, .c =| Y − X | is the number of attributes
present in y but not in x and .d =| X ∩ Y | is the number of attributes in neither x or y and .| . |
the cardinality of a set
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