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Abstract

The objective of this paper is to propose a topological approach
of clustering in evolutionary data analysis. We are interested in clus-
tering resulting from exploratory methods of joint analysis of several
data tables, methods applied more particularly to temporal data.

The clustering is one of the most widely used approaches to ex-
ploring multidimensional data. The two common unsupervised clus-
tering strategies are Hierarchical Ascending Clustering (HAC) and
k-means partitioning used to identify groups of similar objects in a
dataset to divide it into homogeneous groups. The proposed approach,
called Topological Clustering on Evolutionary Data (TCED), is based
on the notion of neighborhood graphs in an evolutionary data con-
text. It makes it possible to simultaneously explore several tables of
data collected at different times on the same individual-rows, the vari-
ables possibly being different according to the tables considered. The
columns-variables of each table are more-or-less correlated or linked
according to whether the variable type. It analyzes in each table the
structure of the correlations or associations observed between the vari-
ables according to their quantitative, qualitative type or a mixture of
both.

The proposed TCED approach is presented and illustrated here us-
ing a real dataset with quantitative variables. Its results are compared
with those resulting from the unsupervised clustering on evolutionary
data analysis methods: Multiple Factorial Analysis (MFA) and Struc-
ture of Tables with Three Statistical Indexes (STATIS).

Keyword: Evolutionary data cluster, proximity measure, neigh-
borhood graph, adjacency matrix, hierarchical clustering, clustering
index.
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1 Introduction

The aim of cluster analysis is to group objects into homogeneous classes, it is
an example of unsupervised learning as we don’t know how many groups will
be formed. The other alternative that is supervised learning is also called
pattern recognition, in this case, the number of groups is known.

The objective of this article is to propose a topological approach of data
analysis applied to data tables crossing the same individuals with possibly
different variables, quantitative, qualitative or mixed.

The proposed approach, called Topological Clustering on Evolutionary
Data (TCED) is different from those that already exist, in particular the
clustering on the results of the Multiple Factorial Analysis (MFA) [8, 9, 10] or
on the results of Structure of Tables with Three Statistical Indexes (STATIS)
methods [16, 18], and with which it is compared.

There are topological approaches specifically devoted to the clustering [1,
2, 20] but as far as we know, none of these approaches has been proposed to
analyze several data tables simultaneously. We can also cite the evolutionary
data clustering approach proposed in [4] but not in a topological context.

The choice of proximity measure among the many existing measures plays
an important role in multidimensional data analysis [5, 17, 27]. It has a
strong impact on the results of any operation of structuring, grouping or
classification of objects.

This study proposes an evolutionary topological classification of individu-
als, generally over time, regardless of the type of variables considered: quan-
titative, qualitative or a mixture of both.

he structure of correlation or dependence of the quantitative or qualita-
tive variables of each evolutionary or temporal data table, depends on the
considered data. Results may change depending on the proximity measure
chosen for each data table. A proximity measure is a function that measures
the similarity or dissimilarity between two objects or variables within a set.

This document is organized as follows. In section 2, we briefly recall the
basic notion of neighborhood graphs, we define and show how to construct
adjacency matrices associated with proximity measures within the framework
of the analysis of the correlation structure of a set of evolving data tables,
and we present the principle of the TCED approach. This is illustrated in
section 3 using an example based on real evolutionnary data. The results of
the TCED are compared with those of the classification applied to the results
of the MFA. Finally, section 4 presents concluding remarks on this work.
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2 Topological and evolutionary data contexts

Topological data analysis is an approach based on the concept of the neigh-
borhood graph. The basic idea is actually quite simple: for a given proximity
measure for continuous or binary data and for a chosen topological structure,
we can match a topological graph induced on the set of objects.

Topological analysis on evolutionary data consists of simultaneously an-
alyzing several data tables (Xt)t=1,T collected at different times on the same
individuals, the variables can be the same or different according to the tables.

We consider at time t, Et = {x1, · · · , xj, · · · , xp} a set of p quantitative
variables of the data table Xt. We can see in [2] cases of qualitative or even
mixed variables.

We can, by means of a proximity measure ut, define a neighborhood
relationship, Vut , to be a binary relationship based on Et × Et. There are
many possibilities for building this neighborhood binary relationship.

Thus, for a given proximity measure ut, we can build a neighborhood
graph on Et, where the vertices are the variables and the edges are defined
by a property of the neighborhood relationship.

Many definitions are possible to build this binary neighborhood relation-
ship. One can choose the Minimal Spanning Tree (MST) [13], the Gabriel
Graph (GG) [21] or, as is the case here, the Relative Neighborhood Graph
(RNG) [24].

Given a set Et of p variables of the data table Xt and a proximity measure
ut, for continuous or binary data, we can construct the associated adjacency
binary symmetric matrix Vut of order p, where, all pairs of neighboring vari-
ables in Et satisfy the following RNG property:

Vut(x
k , xl) =




1 if ut(x
k , xl) ≤ max[ut(x

k , xt), ut(x
t , xl)] ;

∀xk, xl, xt ∈ E, xt �= xk and xt �= xl

0 otherwise.

This means that if two variables xk and xl which verify the RNG property are
connected by an edge, the vertices xk and xl are neighbors.

Figure 1 shows a simple example in R2 of two variable sets E1 and E2

of the same eight quantitative variables, which verify the structure of the

RNG graph with the Euclidean distance u1(x
k , xl) =

√∑2
j=1(x

k
j − xl

j)
2

for the data table X1 at time t = 1 and Manhattan distance u2(x
k, xl) =∑p

j=1 |xk
j − xl

j| for the data table X2 at time t = 2, as well as the associated
binary adjacency matrices Vu1 and Vu2 .
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Figure 1: RNG - Euclidean and Manhattan distances - Adjacency matrices

For example, at time t = 1, we can see that for the first and the fourth
variables, Vu1(x

1, x4) = 1, it means that on the geometrical plane, the hyper-
Lunula (intersection between the two hyperspheres centered on the two vari-
ables x1 and x4) is empty.

This generates a topological structure based on the objects in Et which
are completely described by the adjacency binary matrix Vut .

For a given neighborhood property (MST, GG or RNG), each measure
ut generates a topological structure on the objects in Et which are totally
described by the adjacency binary matrix Vut .

2.1 Reference adjacency matrices

The objective is initially, to analyze in a topological and evolutionary way
the correlation structures of the variables [2] of the data tables considered,
then to establish on this analysis, a clustering of the evolutionary individuals.

At time t, we construct the reference adjacency matrix noted Vu�t, in the
case of quantitative variables, from the correlation matrix of data table Xt.
The expressions of the suitable adjacency reference matrices in the case of
qualitative variables or mixed variables are given in [2, 3].

To examine the correlation structure between the variables of data table
Xt, we look at the significance of their linear correlation coefficient.
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This adjacency matrix can be written as follows using the t-test or Stu-
dent’s t-test of the linear correlation coefficient ρ of Bravais-Pearson:

For quantitative variables, the reference adjacency matrix Vu�t associated
to reference measure u�t is defined as:

Vu�t(x
k, xl) =

{
1 if p-value = P [ | Tn−2 | > t-value ] ≤ α ; ∀k, l = 1, p
0 otherwise.

Where p-value is the significance test of the linear correlation coefficient
for the two-sided test of the null and alternative hypotheses, H0 : ρ(x

k , xl) =
0 vs. H1 : ρ(x

k , xl) �= 0.
Let Tn−2 be a t-distributed random variable of Student with ν = n − 2

degrees of freedom. In this case, the null hypothesis is rejected with a p-value
less or equal a chosen α significance level, for example α = 5%. Using linear
correlation test, if the p-value be very small, it means that there is very small
opportunity that null hypothesis is correct, and consequently we can reject
it. Statistical significance in statistics is achieved when a p-value is less than
a chosen significance level of α. The p-value is the probability of obtaining
results which acknowledge that the null hypothesis is true.

Whatever the type of variable set being considered, the built reference
adjacency matrix Vu�t is associated with an unknown reference proximity
measure u�t.

The robustness depends on the α error risk chosen for the null hypothesis:
no linear correlation in the case of quantitative variables, or positive devia-
tion from independence in the case of qualitative variables, can be studied
by setting a minimum threshold in order to analyze the sensitivity of the
results. Certainly the numerical results will change, but probably not their
interpretation.

2.2 Evolutionary data analysis and clustering & Nota-
tions

We assume that we have at our disposal T tables of evolutionary dataXt with
the same n rows-individuals and p different columns-variables or the same
ones measured at different times t, t = 1, · · · , T . We will use the following
notations:

- Xt(n,p)
is the data matrix with n individuals and p variables at time t,

- X(n,T×p) = [X1| · · · |Xt| · · · |XT ] is the global data matrix with n rows-
individuals and T ×p columns-variables, concatenation in columns of T data
tables Xt.



94	 International Journal of Mathematics, Statistics and Operations Research

- Vu�t is the symmetric adjacency matrix of order p, associated with the
reference measure u�t which best structures the correlations of the variables
of the data table Xt,

- Vu� = Diag[Vu�t ]t=1,T is the global diagonal adjacency matrix of order
T × p, associated with the global data matrix X,

- X̂(n,T×p) = XVu� is the projected data matrix with n individuals and
T × p variables,

-MT×p is the matrix of distances of order T×p in the space of individuals,
- Dn = 1

n
In is the diagonal matrix of weights of order n in the space of

variables.

We first analyze, in a topological way, the correlation structure of the
variables using a Topological PCA, which consists of carrying out the stan-
dardized PCA [6, 15] triplet ( X̂ , MT×p , Dn ) of the projected data matrix

X̂ = XVu� and, for comparison, the MFA method.

We then proceed with a clustering of individuals based on the significant
principal components of the previous topological PCA.

Figure 2: Evolutionary data tables - Associated adjacency matrices

TCED consist to perform a HAC based on to the Ward1 [25] criterion,
on the significant factors of the standardized topological PCA of the triplet
(X̂,MT×p, Dn).

2.3 Measures for comparing clusterings

The following subsection gives the definitions of some indices generally used
to compare clusterings. A partition of n individuals defines a qualitative
variable whose categories are the classes of the partition. C1 and C2 are

1Aggregation based on the criterion of the loss of minimal inertia.
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two partitions of the same n objects with the same number r of clusters.
A comparison of two partitions is obtained by constructing the contingency
table N = (nij)i,j=1,r crossing these two variables, a r×r matrix whose ij−th
entry equals the number of elements in the intersection of the clusters C1 and
C2. We thus count the pairs of individuals who remain or do not remain in
the same clusters among the C2

n = n(n−1)
2

pairs of individuals.
A very intuitional approach to comparing clusterings is counting pairs of

objects that are ”classified” in the same way in both clusterings, i.e. pairs of
objects that are in the same cluster (in different clusters, respectively) under
both clusterings.

We use indices and measures based on counting pairs to compare the two
clusterings with the same number of classes, the proposed TCED and the
HAC-MFA, the HAC performed on the results of the MFA [9, 10]. In order
to measure their concordance, various popular indexes [26] can be calculated
such as Rand, Jaccard, Fowlkes and Mallows, Adjusted Rand index, Cohen’s
kappa, etc.. Thus, can we consider that the configurations of these two
clusterings are similar?

(I) R SQUARED (R2)

The homogeneity of a cluster, its internal consistency, can be analyzed
from the variance or the inertia of the objects that compose it. The more the
objects are concentrated around their center of gravity, the more the cluster
is homogeneous (low inertia within classes: IWithin). A common descriptive
statistic in cluster analysis is the R2 that measures the overall proportion of
variance explained by the cluster means.

The ratio of variances or inertia explained by classes ; R2 = IBetween

ITotal
must

be as high as possible, its measures the quality of the clustering, its value
should be as close as possible to one without too many classes. The greater
the value of R2, the more homogeneous the classes of the partition.

(II) KAPPA TEST (κ)

The kappa coefficient applied to the pairs of objects, provides a new way
to measure the agreement between two partitions C1 and C2 having the same
number r of multi-clusters, from the same sample of size n. The permutation
of the maximum kappa value is used to identify the classes of a partition.
We study the resemblance between the clusterings using the Cohen’s kappa
coefficient. The non-parametric statistical test of Kappa [7] allows, in this
context of comparison, to measure the agreement or concordance between
two classifications. The Kappa agreement rate can be estimated from the
contingency table N = (nij)i,j=1,r using the following relation:

κ̂(C1, C2) = Po−Pe

1−Pe
=

n
∑r

i=1 nii−
∑r

i=1 ni.n.i

n2−
∑r

i=1 ni.n.i
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where, Po =
1
n

∑r
i=1 nii is the observed proportion of concordance,

and Pe = 1
n2

∑r
i=1 ni.n.i represents the expected proportion of concor-

dance under the assumption of independence.

n be the number of individuals, ni. =
∑r

j=1 nij and n.j =
∑r

i=1 nij designate
the number of objects in the ith cluster C1 and the jth cluster C2 respectively.

The Kappa coefficient is a real number, without dimension, between -
1 and 1. The concordance is higher the value of Kappa is to 1 and the
maximum concordance is reached (κ̂ = 1) when Po = 1 and Pe = 0.5. When
there is perfect independence, κ̂ = 0 with Po = Pe, and in the case of total
mismatch, κ̂ = −1 with Po = 0 and Pe = 0.5.

(III) RAND INDEX (R)

In order to compare two partitions C1 and C2, the most used agreement
index is the Rand index (RI) [22]. This index is the overall percentage of
pairs in agreement. The Rand index in its contingent form, where all pairs
are considered, including identical ones, is written:

R(C1, C2) = 2Σi,jnij
2−Σini.

2−Σjn.j
2+n2

n2

This index takes its values between 0 and 1, it is equal to 1 when the two
partitions are identical. Many variants of this index have been proposed.

(IV) ADJUSTED RAND INDEX (AR)

The Adjusted Rand index (AR) proposed by [12] is frequently used in
cluster validation since it is a measure of agreement between two partitions.
It is a way to compare the similarity of results between two different clustering
methods.

The AR index between these two partitions can be computed from the
contingency table N = (nij)i,j=1,r formed by the partitions C1 and C2, can
be written as:

AR(C1, C2) =
Σi,jC

2
nij

−
[ΣiC

2
ni.

ΣjC
2
n.j

]

C2
n

1
2
[ΣiC2

ni.
+ΣjC2

n.j
]−

[ΣiC
2
ni.

ΣjC
2
n.j

]

C2
n

where, nij be the number of objects that are in both cluster Xi and Yj.
ni = Σjnij and nj = Σinij designate the number of objects in cluster Xi and

cluster Yj respectively. The term C2
n = n(n−1)

2
is the binomial coefficients.

The AR index should be interpreted as follows: AR ≥ 0.90 excellent
recovery; 0.80 ≤ AR < 0.90 good recovery; 0.65 ≤ AR < 0.80 moderate
recovery; AR < 0.65 poor recovery.
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(V) CHI-SQUARED COEFFICIENT (χ2)

The measures for comparing clusterings are generally those originally de-
veloped for statistical purposes. The chi-square coefficient is one of them, it
is one of the most well-known measurements of this type. It is defined as:

χ2(C1, C2) = Σk
i=1Σ

k
j=1

(nij−n̂ij)
2

n̂ij
where n̂ij =

ni.n.j

n

This measure was proposed by Pearson [19] to test the independence in a
bivariate distribution, and not to evaluate in this context of clustering their
similarity. The application of this measure for the purpose of comparing
clusterings lies in the fact that we must assume the independence of the two
clusterings. In general, this is not true and the result of a comparison with
such a measure must therefore be put into perspective.

(VI) JACCARD INDEX (J )

The Jaccard index (JI) [14] is an association coefficient known to study
the similarity between objects for binary data. It is very similar to the Rand
Index, however it disregards the pairs of elements that are in different clusters
for both clusterings. It is defined as follows:

J (C1, C2) = Σi,jnij
2−n

Σini.
2+Σjn.j

2−Σi,jnij
2−n

(VII) FOWLKES-MALLOWS INDEX (FM)

The Fowlkes and Mallows index (FMI) [11] is presented as a measure to
compare hierarchical clusterings [4]. The generalized Fowlkes–Mallows index
is defined by:

FM(C1, C2) = Σi,jnij
2−n√

(Σini.
2−n)(Σjn.j

2−n)

Like for the adjusted Rand Index, the ”amount” of similarity of two
clusterings corresponds to the deviation from the expected value under the
null hypothesis of independant clusterings with fixed cluster sizes. Again,
the strong assumptions on the distribution make the result hard to interpret.

Finally, the TCED approach and its dendrogram are easily programmable
from the PCA and HAC procedures of SAS, SPAD or R software.

3 Illustrative example

To illustrate the TCED approach, we use data extracted from Eurostat
databases [23] on the state of public finances of the 28 countries of the
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European Union (EU) over the homogeneous period of four years, from 2016
to 2019.

We examine here the evolution of the main characteristics of public fi-
nances of the EU28 during the period 2016− 2019, which are more precisely,
the gross public debt, the deficit, the public expenditure and the public rev-
enue. The same 4 characteristics of public finances were measured on the
same 28 EU countries on 4 different years. Simple statistics of the variables
considered are displayed in the Table 1.

Table 1: Summary statistics of EU28 public finances - Period 2016-2019
2016 2017

Standard Standard
Variable Label Mean Deviation (N) Min Max Mean Deviation (N) Min Max

Expenditures EXPE 43.54 6.88 28.10 56.70 42.72 6.87 26.20 56.50
Deficit DEFI -0.98 1.59 -4.30 1.90 -0.29 1.76 -3.10 3.30

Revenues REVE 42.55 6.58 27.30 53.90 42.43 6.67 25.90 53.50
Debt DEBT 70,90 37.52 10.00 180.50 68.13 37.21 9.10 179.50

2018 2019
Standard Standard

Variable Label Mean Deviation (N) Min Max Mean Deviation (N) Min Max
Expenditures EXPE 43.10 6.48 25.30 55.60 42.94 6.45 24.30 55.40

Deficit DEFI -0.27 1.63 -3.60 3.00 -0.11 1.81 -4.30 4.10
Revenues REVE 42.84 6.46 25.50 53.40 42.81 6.54 24.70 53.80

Debt DEBT 66.29 38.51 8.20 186.40 64.05 37.53 8.50 180.60

Table 2: Global reference adjacency matrix

Vu∗ =




Vu∗2016 0 0 0

0 Vu∗2017 0 0

0 0 Vu∗2018 0

0 0 0 Vu∗2019




=




1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1



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Table 3: Topological PCA and MFA - Correlations Variables & Factors

Topological PCA
Eigenvalue Proportion (%) Cumulative (%)

1 11,434 71,46 71,46
2 2.870 17,94 89,40
3 1.373 8,58 97,98
4 0.258 1,61 99,60
5 0.040 0,25 99,85
6 0.012 0,07 99,92

.

.

.

.

.

.

.

.

.

.

.

.
16 0,000 0,00 100,00

Total 16.000 100.00

Correlation Factor
Variable F1 F2
EXPE16 0.990 -0.079
DEFI16 -0.924 0.347
REVE16 0.695 0.684
DEBT16 0.969 -0.215
EXPE17 0.,995 -0.055
DEFI17 -0.934 0.331
REVE17 0.684 0.703
DEBT17 0.976 -0.198
EXPE18 0.993 -0.067
DEFI18 -0.330 0.486
REVE18 0.666 0.719
DEBT18 0.975 -0.193
EXPE19 0.994 -0.048
DEFI19 -0.231 0.455
REVE19 0.641 0.739
DEBT19 0.978 -0.180

MFA
Eigenvalue Proportion (%) Cumulative (%)

1 3.939 55,33 55,33
2 1.923 27,01 82,35
3 0.920 12.93 95.28
4 0.156 2.20 97.47
5 0.097 1.36 98.83
6 0.056 0.79 99.62

.

.

.

.

.

.

.

.

.

.

.

.
15 0.000 0.00 100.00

Total 7.119 100.00

Correlation Factor
Variable F1 F2
EXPE16 0.965 0.161
DEFI16 -0.330 0.734
REVE16 0.929 0.347
DEBT16 0.610 -0.586
EXPE17 0.966 0.170
DEFI17 -0.270 0.755
REVE17 0.924 0.374
DEBT17 0.632 -0.585
EXPE18 0.956 0.214
DEFI18 -0.189 0.748
REVE18 0.911 0.402
DEBT18 0.634 -0.581
EXPE19 0.947 0.220
DEFI19 -0.133 0.734
REVE19 0.900 0.422
DEBT19 0.646 -0.584

Figure 3: Topological PCA and MFA of EU-28 public finances

The global reference adjacency matrix Vu� associated to the proximity
measure u� adapted to the evolutionary data considered, is built from the
correlation matrices of the evolving tables according the definition.

Note that in this case of quantitative variables, it is considered that two
positively correlated variables are related and that two negatively correlated
variables are related, but remote, we will therefore take into account the sign
of the correlation between variables in the adjacency matrix.
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We first carry out a Topological PCA to identify the correlation structure
of the variables, an HAC according to Ward’s criterion is then applied on the
significant principal components of this PCA of the projected data. We will
gradually compare the results of the topological PCA and the MFA method.

Figure 3 presents, for comparison on the first factorial plane, the correla-
tions between principal components-factors and the original variables.

We can see that these correlations are slightly different, as are the per-
centages of the inertias explained on the first principal planes of Topological
PCA and MFA method.

Table 3 shows that the two first factors of the Topological PCA explain
71.46% and 17.94%, respectively, accounting for 89.40% of the total variation
in the data set; however, the two first factors of the MFA add up to 82.35%.
Thus, the first two factors provide an adequate synthesis of the data, that
is, of the public finance of EU-28 over period 2016-2019. We restrict the
comparison to the first significant factorial plan.

The significant correlations between the initial variables and the principal
factors in the two analyses are quite different.

For comparison, Figure 4 shows dendrograms of the Topological and MFA
clustering of the EU countries according to their public finances.

Note that the partitions chosen in 4 clusters are appreciably different,
as much by composition as by characterization. The percentage of the total
variance explained by the TCED approach, R2 = 70.65%, is higher than that
of the HAC-MFA approach, R2 = 61.31%, thus indicating that the TCED
clusters are more homogeneous than those of HAC-MFA.

Table 4 summarizes the significant profiles (+) and anti-profiles (-) of the
two typologies; with a risk of error less than or equal to 5%, they are quite
different. The first TCED cluster, composed of seven countries (Belgium,
Spain, Hungary, Finland, France, Cyprus and United Kingdom), is charac-
terized by a high share of expenditure throughout the period 2016 − 2019,
by a high share of the debt over the years 2018 and 2019 and by a high
share of income in 2018 and a low share of the deficit over the entire period
2016− 2019. The second cluster which groups together seven EU counties is
characterized by a high share of revenues over the entire period 2016− 2019
and by a high share of deficit in 2018 and 2019. The third cluster composed
of Greece, Italy and Portugal, is characterized by a high share of debts and
expenditures over the entire period 2016− 2019 and a low share of deficit in
2016 and 2017 compared to the EU average. The last cluster 4, represented
by eleven countries, is characterized by a high share of the deficit at the
start of the 2016 and 2017 period and a low share of the Debt, revenues and
expenditures throughout the 2016− 2019 period.
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Figure 4: Topological and HAC-MFA cluster dendrograms of the EU-28
countries

Table 5 shows the contingency table crossing the clusters of the two par-
titions TCED and HAC-MFA. The classes of HAC-MFA were swapped and
renumbered in columns to optimize the concordance indices.

Remember that the goal is not to study whether the two partitions are
independent, but whether they are concordant.

Thus, for this example, the calculated Kappa maximal is equal to 0.473
corresponds to a p-value less than 0.01%. Since this probability is lower
than a pre-specified significance level of 5%, the null hypothesis, H0 : κ = 0
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TCED
Cluster Cluster 1 Cluster 2 Cluster 3 Cluster 4
Frequency (%) 7 (25.00%) 7 (25.00%) 3 (10.71%) 11 (39.29%)
Composition Belgium, Spain, Denmark,Sweden, Greece, Bulgaria, Malta,

Latvia,
Hungary, Finland, Germany, Slovenia Italy, Czechia, Poland,
France, Cyprus, Croatia, Austria Portugal Estonia, Romania,
United-Kingdom Netherlands Lithuania, Luxem-

bourg,
Ireland,Slovakia

Profile (+) EXPE16 to 19 REVE16 to 19 DEBT16 to 19 DEFI16,17
DEBT18 to 19 DEFI18,19 EXPE16 to 19
REVE18

Anti-profile(-) DEFI16 to 19 DEFI16,17 DEBT16 to 19
REVE16 to 19
EXPE16 to 19

HAC-MFA
Cluster Cluster 1 Cluster 2 Cluster 3 Cluster 4
Frequency (%) 6 (21.43%) 9 (32.14%) 7 (25.00%) 6 (21.43%)
Composition Italy, Greece, Spain, United-

Kingdom,
Bulgaria, Estonia, Netherlands, Sweden,

Belgium, France, Hungary, Cyprus, Ireland, Latvia, Germany, Denmark,
Finland Slovenia, Croatia, Lithuania, Roma-

nia
Czechia, Luxembourg

Austria Poland, Slovakia Malta
Portugal

Profile (+) EXPE16 to 19 DEFI16 to 19
REVE16 to 19 REVE19
DEBT16 to 19

Anti-profile (-) DEFI16 to 18 DEBT16 to 19 DEBT16 to 19
REVE16 to 19
EXPE16 to 19

Table 4: Characterization of clusters

independence or not concordance is rejected. This value indicates a moderate
agreement between the two clusterings.

HAC-MFA

TCED C2 C4 C1 C3 Total

C1 4 0 3 0 7
C2 2 4 1 0 7
C3 1 0 2 0 3
C4 2 2 0 7 11

Total 9 6 6 7 28

Table 5: Contingency table - TCED & HAC-MFA

κ̂max χ2 R AR J FM
V alue 0.473 26.128 0.727 0.241 0.272 0.064

p-value 0.0001 0.0019

Table 6: Clustering comparison index results

The AR value equal to 0.241 is less than 0.65, it is interpreted as espe-
cially discordant clusterings.
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4 Conclusion

This paper proposes a new topological approach to the clustering of individu-
als which can enrich classical data analysis methods within the framework of
the clustering of objects. The results of the topological clustering approach,
based on the notion of a neighborhood graph, are as good - or even better,
according to the R-squared results - than the existing classical method. The
TCED approach is be easily programmable from the PCA and HAC proce-
dures of SAS, SPAD or R software. Future work will consist in extending
this topological approach to other data analysis methods, particularly in the
context of prediction models.
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