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Abstract: The clustering of objects (individuals or variables) is one of the most used approaches to exploring multivariate data. The 

two most common unsupervised clustering strategies are hierarchical ascending clustering (HAC) and k-means partitioning used to 

identify groups of similar objects in a dataset to divide it into homogeneous groups. The proposed topological clustering of variables, 

called TCV, studies an homogeneous set of variables defined on the same set of individuals, based on the notion of neighborhood 

graphs, some of these variables are more-or-less correlated or linked according to the type quantitative or qualitative of the variables. 

This topological data analysis approach can then be useful for dimension reduction and variable selection. It’s a topological hierarchical 

clustering analysis of a set of variables which can be quantitative, qualitative or a mixture of both. It arranges variables into 

homogeneous groups according to their correlations or associations studied in a topological context of principal component analysis 

(PCA) or multiple correspondence analysis (MCA). The proposed TCV is adapted to the type of data considered, its principle is 

presented and illustrated using simple real datasets with quantitative, qualitative and mixed variables. The results of these illustrative 

examples are compared to those of other variables clustering approaches. 

 

Key words: Hierarchical clustering, proximity measure, neighborhood graph, adjacency matrix, multivariate quantitative, qualitative 

and mixed data analysis, dimension reduction. 

 

1. Introduction  

The objective of this article is to propose a new 

approach for classifying variables. This is a topological 

approach that is different from those that already exist 

and with which it is compared. 

Besides classical and well know methods devoted to 

the clustering of objects, there are some approaches 

specifically devoted to the clustering of variables, the 

Varclus classification procedure [23] implemented in 

the SAS software, the ClustOfVar approach [9], the 

CVLC approach [28, 29] for clustering variables 

around latent components and the Clustatis approach 

[19], but as far as we know, none approach, is proposed 

in a topological context. 

A clustering of variables can also be considered as a 

dimension reduction approach, like a factor analysis. 

The purpose of the classification of variables is to 

group together the variables strongly related to each 

other, that is to say to separate the variables into classes 
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of variables. It will be possible to summarize each class 

of variables by a single quantitative synthetic variable. 

The interest here is to understand the structures 

underlying the data, to constitute a summary of the 

information carried by the data or to detect 

redundancies, for example with a view to reducing 

number of variables in another process. 

The objective of the clustering of variables is to 

obtain linked and redundant classes of variables. 

Specific algorithms have thus been developed for the 

clustering of variables. To create problems from 

variables grouped in a questionnaire, we can achieve 

this using two main types of methods: non-hierarchical 

clustering such as K-means or dynamic clusters, and 

hierarchical clustering of the ascending or descending 

type. 

Similarity measures play an important role in many 

areas of data analysis. The results of any operation 

involving structuring, clustering or classifying objects 

are strongly dependent on the proximity measure chosen.  
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Generally the variables are homogeneous in the 

sense that they revolve around a particular theme. 

Unlike the clustering of individuals, which is generally 

done from a single set of homogeneous variables 

relating to a single theme, the clustering of variables 

can process several sets of homogeneous variables 

from several different themes. The clusters of variables 

of the chosen partition can be considered as a selection 

of variables, each cluster of variables can then be 

synthesized separately using a factor analysis for 

example. 

The TCV can be considered as a method of reduction 

of dimensions where each class of correlated variables 

of the partition can be represented by the synthesis 

variable of the variables of the class, or again, as a 

method of selection of variables where each class can 

be represented by the significant variables of the class. 

The present study proposes a topological 

hierarchical clustering of variables, with no restriction 

on the type, quantitatives, qualitatives or a mixture both 

of them.  

Several topological studies have been proposed in 

factorial analyses context, discrimination analysis [4], 

simple and multiple correspondence analyses [2] and 

principal component analysis [1] but none on clustering 

of variables. 

Therefore, this paper focuses on unsupervised 

clustering of a set of variables of any type, quantitative, 

qualitative or a mixture of both. The eventual 

associations or correlations between the variables 

partly depends on the database being used and the 

results of the topological clustering of these variables 

can change according to the selected proximity 

measure. A proximity measure is a function which 

measures the similarity or dissimilarity between two 

objects or variables within a set. 

This paper is organized as follows. In section 2, we 

briey recall the basic notion of neighborhood graphs, 

we define and show how to construct an adjacency 

matrix associated with a proximity measure within the 

framework of the analysis of the correlation or 

association structure of a set of variables. Section 3 

presents the principles of the TCV according to the 

three types of variables. It is illustrated in section 4 

using simple examples on real data. The TCV results 

are compared according to the type of variables, with 

those of different known clustering of variables 

approaches. Finally, Section 5 gives concluding 

remarks of this work. 

2. Topological Context 

Topological data analysis is an approach based on 

the concept of the neighborhood graph. The basic idea 

is actually quite simple, for a given proximity measure 

for continuous or binary data and for a chosen 

topological structure, we can match a topological graph 

induced on the set of objects. 

Consider a set 𝐸 =

{𝑥1, ⋯ , 𝑥𝑗 , ⋯ 𝑥𝑝, 𝑦11, ⋯ , 𝑦1𝑚1 , … , 𝑦𝑞1, ⋯ , 𝑦𝑞𝑚𝑞} of a 

mixture variables, p quantitative variables 

{𝑥1, ⋯ , 𝑥𝑗 , ⋯ 𝑥𝑝} , and q qualitative variables 

{𝑦1, ⋯ , 𝑦𝑘 , ⋯ 𝑦𝑞} where, 𝑚 = ∑  
𝑞
𝑘=1 𝑚𝑘  is the total 

number of modalities and mk denotes the number of 

modalities of the variable yk. 

We can, by means of a proximity measure u, define 

a neighborhood relationship Vu to be a binary 

relationship on EE. There are many possibilities for 

building this neighborhood binary relationship. 

Thus, for a given proximity measure u, we can build 

a neighborhood graph on E, where the vertices are the 

variables and the edges are defined by a property of the 

neighborhood relationship. 

Many definitions are possible to build this binary 

neighborhood relationship. One can choose the 

Minimal Spanning Tree (MST) [15], the Gabriel Graph 

(GG) [21] or, as is the case here, the Relative 

Neighborhood Graph (RNG) [27]. 

For any proximity measure u listed in Table 8 given 

in the appendix, we construct the associated adjacency 

binary symmetric matrix Vu of order p+m, where, all 

pairs of neighboring variables in E satisfy the following 

RNG property: 
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This means that if two variables xk and xl
 which 

verify the RNG property are connected by an edge, the 

vertices xk
 and xl

 are neighbors. 

Fig. 1 shows an example in ℝ2
 of a set of eight 

objects, three quantitative variables {𝑥1, 𝑥2, 𝑥3}  and 

five dummy variables {𝑥41, 𝑥42, 𝑥51, 𝑥52, 𝑥53} of two 

qualitative variables {𝑥4, 𝑥5}, which verify the RNG 

graph structure with the chosen proximity measure u, 

the Euclidean distance. 

 

 

Fig. 1  RNG structure - Euclidean proximity measure - Associated adjacency matrix. 
 

For example, for the first quantitative variable x1
 and 

the first modality of the first qualitative variable x41, 

Vu(x
1; x41) = 1, it means that on the geometrical plane, 

the hyper-Lunula (intersection between the two 

hyperspheres centered on the two variables x1
 and x41 is 

empty. 

For a given neighborhood property (MST, GG or 

RNG), each measure u generates a topological structure 

on the objects in E which are totally described by the 

adjacency binary matrix Vu. 

2.1 Reference Adjacency Matrices 

Three topological approaches are described 

according to the type of variables considered, 

quantitative or qualitative or a mixture of both. 

2.2 Quantitative Variables 

We assume that we have at our disposal a set 

{𝑥𝑗; 𝑗 = 1, ⋯ , 𝑝}  of p quantitative variables and n 

individuals-objects. The interest lies in whether there is 

a topological correlation between all the considered 

variables [1]. 

We construct the adjacency matrix denoted by 𝑉𝑢⋆
, 

which corresponds to the correlation matrix. Thus, to 

examine the correlation structure between the variables, 

we look at the significance of their linear correlation 

coefficient. This adjacency matrix can be written as 

follows using the t-test or Student’s t-test of the linear 

correlation coefficient 𝜌 of Bravais-Pearson: 

Definition 1. The reference adjacency matrix 𝑉𝑢⋆
 

associated to reference measure 𝑢⋆  is defined as: 

( ) 21 if p-value = t-value ; , 1,
,

0 otherwise

nk l

u

P T k l p
V x x

 −
    =  = 


 

Where p-value is the significance test of the correlation 

coefficient for the two-sided test of the null and 

alternative hypotheses, H0: 𝜌(𝑥𝜅 , 𝑥𝑙) = 0  vs. H1: 

𝜌(𝑥𝑘 , 𝑥𝑙) ≠ 0. 

Let Tn-2 be a t-distributed random variable of Student 

with v = n-2 degrees of freedom. In this case, the null 
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hypothesis is rejected with a p-value less or equal a 

chosen  significance level, for example  = 5%. Using 

linear correlation test, if the p-value be very small, it 

means that there is very small opportunity that null 

hypothesis is correct, and consequently we can reject it. 

Statistical significance in statistics is achieved when a 

p-value is less than a chosen significance level of . 

The p-value is the probability of obtaining results 

which acknowledge that the null hypothesis is true. 

2.3 Qualitative Variables 

We assume that we have at our disposal {𝑦𝑘; 𝑘 =

1, … , 𝑞} ; a set of 𝑞 ≥ 2  qualitative variables and 

partitions of 𝑛 = ∑ 𝑛𝑘
𝑞
𝑘=1  individuals-objects into mk 

modalities-subgroups. The interest lies in whether there 

is a topological association between all these variables 

[4]. 

- Yk = 𝑌(𝑛,𝑚𝑘)  the disjonctif table, data matrix 

associated to the mk dummy variables of the qualitative 

variable 𝑦𝑘
 with n rows-objects and mk columns-

modalities, we check that ∀𝑖=1,𝑛, Σ𝑘=1
𝑚𝑘 𝑦𝑖

𝑘 = 1  and 

∑ 𝑦𝑖
𝑘 = 𝑛𝑘

𝑛

𝑖=1
. 

- Y(n;m) = [𝑌1|𝑌2|. . . ∣ 𝑌𝑞]  the indicator matrix, 

juxtaposition of the q binary tables Yk, with n rows-

objects and m = ∑ 𝑚𝑘
𝑞
𝑘=1 columns-modalities, we check 

that ∑ 𝑦𝑖
𝑘 = 𝑞

𝑚𝑘

𝑘=1
, ∀𝑖 and ∑ Σ𝑘=1

𝑚𝑘 𝑦𝑖
𝑘 = 𝑛𝑞

𝑛

𝑖=1
, 

- 
( , )

t

m m YY= the symmetric Burt matrix of the 

two-way cross-tabulations of the q variables. 

The dissimilarity matrix associated with a proximity 

measure is computed from data given by the Burt Table 

ℬ . The attributes of any two points’ modalities’ 𝑦𝑘
 

and 𝑦𝑙
 in {0,1}𝑛

 of the proximity measures can be 

easily written and calculated from the Burt matrix. 

A contingency table is one of the most common ways 

to summarize categorical data. Generally, interest lies 

in whether there is an association between the row 

variable and the column variable that produce the table; 

sometimes there is further interest in describing the 

strength of that association. The data can arise from 

several different sampling frameworks, and the 

interpretation of the hypothesis of no association 

depends on the framework. The question of interest is 

whether there is an association between the two 

variables. 

In this case, we build the adjacency matrix 𝑉𝑢∗
, 

which corresponds best to the Burt table. Thus, to 

examine similarities between the modalities we 

examine the gap between each profile-modality and its 

average profile, that is, the gap to independence. This 

best adjacency matrix can be written as follows:  

Definition 2. The reference adjacency matrix Vu? 

associated to reference measure 𝑢∗ is defined as: 

( ) 2
1 if ; , 1, ; 1, and 1,

.,

0 otherwise.                

 krls kr
k lkr ls

kru

k l q r m s m
nqV y y




 = = =
= 




 

ℬ𝑘𝑟𝑙𝑠 = ∑ 𝑦𝑖
𝑘𝑟𝑦𝑖

𝑙𝑠𝑛

𝑖=1
element of the Burt matrix that 

corresponds to the number of individuals who have the 

modality r of the variable k and the modality s of the 

variable l, 

ℬ𝑘𝑟.. = ∑ Σ𝑠=1
𝑚𝑠 𝑏𝑘𝑟𝑙𝑠

𝑞

𝑙=1
 is the row margin of the 

modality r of the variable k, 

krls

kr 
is the row profile of the modality r of the 

variable k, 

2

kr

nq


is the average profile of the modality r of the 

variable k, nq2
 being the total number. 

2.4 Mixed Variables 

In this case, the variables for clustering can be a 

mixture of both quantitative and qualitative variables. 

Let  ; 1, ,jx j p= and  ; 1, ,ky k q= be two 

sets with p quantitative variables and q qualitative 

variables respectively, with partitions of 𝑛 = ∑ 𝑛𝑘
𝑞
𝑘=1  

individuals-objects into mk modalities-subgroups which 

total 𝑚 = ∑ 𝑚𝑘
𝑞
𝑘=1  modalities. The interest lies in 

whether there is a topological dependency between all 

the mixed variables. Simultaneous treatment of mixed 

data (quantitative and qualitative) cannot be achieved 
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directly by conventional methods of data analysis. So, 

firstly we transform qualitative data into quantitative 

data [5]. This transformation is based on multivariate 

analysis of variance (MANOVA) and on the 

maximization of the mixed criterion, proposed in terms 

of correlation squares by Saporta [24] and 

geometrically in terms of square cosines of angles by 

Escofier [12]. Then secondly, we build the adjacency 

matrix 𝑉𝑢∗
, associated to reference proximity measure 

𝑢∗ , from the correlation matrix of all variables, 

quantitative and transformed qualitative variables, 

according to the definition 1. Then secondly, we build 

the adjacency matrix 𝑉𝑢∗
, associated to reference 

proximity measure 𝑢∗, from the correlation matrix of 

all variables, quantitative and transformed qualitative 

variables, according to Definition 1. 

3. Topological Clustering of Variables — 

Selective Review 

Whatever the type of the set of variables considered, 

the binary and symmetric adjacency matrix build 𝑉𝑢∗
 is 

associated with an unknown reference proximity 

measure 𝑢∗. 

The robustness according to the  error risk chosen 

for the null hypothesis: no linear correlation in the case 

of quantitative variables, or the positive deviation from 

independence in the case of qualitative variables, can 

be studied by setting a minimum threshold in order to 

analyze the sensitivity of the results. True, the 

numerical results will change, but probably not their 

interpretation. 

In order to describe the similarities between 

variables and to group them into homogeneous groups, 

we apply the notion of the “themascope” or structural 

analysis of survey data [17], which is a methodological 

sequence of a clustering method on the principal 

components of a factorial analysis method. In this case 

here, it is a topological factorial analysis followed by a 

 
1 Aggregation based on the criterion of the loss of minimal 

inertia. Ward’s method is a criterion applied in hierarchical 

cluster analysis; it is a general agglomerative hierarchical 

clustering procedure. With the square of the Euclidean distance, 

Hierarchical Ascendant Classification (HAC). For the 

topological factorial analysis method, we carry out the 

classical Multidimensional Scaling (MDS), namely 

factorial analysis on the similarity table [8], the 

reference adjacency matrix 𝑉𝑢∗
 associated with the 

proximity measure 𝑢∗, the most appropriate measure 

for the considered data. 

Definition 3. The Topological Clustering of 

Variables (TCV) consist to perform a HAC algorithm 

based on the Ward criterion1
 [30], on the significant 

components, of the topological multiple 

correspondence analysis (TMCA) if the variables are 

qualitative or of the topological principal component 

analysis (TPCA) if the variables are quantitative or a 

mixture of quantitative and qualitative variables. 

The TCV hierarchical approach and its dendrogram 

are easily programmable from the PCA and HAC 

procedures of the SPAD, SAS or R software. 

As for classical methods devoted to the clustering of 

observations, there are many methods devoted 

specifically to the clustering of variables, particularly 

quantitative ones. One of the most used is the Varclus 

procedure [23] of the SAS software, but we can also 

apply the ClustOfVar procedure [9] implemented in R, 

the CVLC procedure [29], clustering around latent 

variables or the Clustatis procedure [19]. 

In the case of the TCV of quantitative variables, it is 

considered that two positively correlated variables are 

related and that two negatively correlated variables are 

related, but remote, we will therefore take into account 

the sign of the correlation between variables. It should 

be noted that the Varclus procedure implemented in the 

SAS software, dedicated to the classification of 

variables, also includes this option. Varclus procedure 

is more precisely a Hierarchical Descending 

Classification (HDC). 

 

this criterion allows one to minimize the total within-cluster 

variance or, equivalently, maximize the between-cluster 

variance. 
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4. Illustration on Real Data of Simple 

Examples 

We illustrate the TCV approach in each of the three 

types of variables, quantitative, qualitative and mixed 

variables. 

4.1 Case of a Set of Quantitative Variables 

The illustrative data table from [13] includes 38 

French brands of bottled water described by 8 variables 

relating to the ion composition (mg/liter). The data 

comes from the information provided on the bottle 

labels. The objective is to group together these 

variables which form a homogeneous set of the ion 

contents of French brands of bottled water. Simple 

statistics of these variables are displayed in Table 1. 

Fig. 2 presents the adjacency matrix 𝑉𝑢∗
 associated 

to the proximity measure 𝑢∗  adapted to the data 

considered, is built from the correlation matrix. Table 

6 given in Appendix, according to Definition 1. 

The correlation circle of the two first TPCA factors 

gives an overview of groups of correlated and 

uncorrelated variables, an HAC according to Ward’s 

criterion is then applied on the TPCA principal 

components. 

 

Table 1  Summary statistics of ion content of French brands of bottled water. 

Variable Frequency Mean Standard Deviation (N) Coefficient of variation (%) Min Max 

CA - Calcium 38 104.184 114.40 109.81 1.00 528.00 

MG - Magnesium 38 28.105 29.50 104.95 0.00 95.00 

NA - Sodium 38 115.658 210.43 181.94 0.00 968.00 

K - Potassium 38 15.079 28.18 186.89 0.00 130.00 

SULP - Sulphates 38 119.237 289.83 243.07 1.00 1342.00 

NO3 - Nitrates 38 1.842 2.64 143.06 0.00 12.00 

HC03 - Carbonates 38 561.368 696.23 124.02 4.00 3380.00 

CL - Chlorides 38 40.868 75.35 184.37 0.00 387.00 
 

 

 

Fig. 2  Representation of the ion composition of French brands of bottled water. 
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Fig. 3  TCV dendrogram of the ion composition of French brands of bottled water. 

 

The dendrogram cluster given in Fig. 3 allows to 

visualize and identify the topological structure of the 

variables. The aggregation indices of TCV suggests a 

partition into 3 clusters of the eight variables. 

The characterization of the classes by the variables, 

Table 2, shows with a risk of error less than or equal to 

5%, that the first cluster composed of 2 variables, 

Calcium and Sulfates, are positively correlated and 

negatively correlated with the variables Sodium, 

Potassium, Carbonates and Chlorides. The Nitrates 

variable alone constitutes the second cluster, it is 

negatively correlated with the Magnesium variable. As 

for the third cluster, composed of 5 variables, only 4 

variables Sodium, Potassium, Carbonates and 

Chlorides are positively correlated with each other, the 

Magnesium variable does not significantly characterize 

this class. 

 

Table 2  Characterization of clusters. 

Cluster 

Frequency (%) 

Cluster 1 

2 (25:00%) 

Cluster 2 

1 (12:50%) 

Cluster 3 

5 (62:50%) 

Profile 
CA-Calcium 

SULF-Sulphates 
NO3-Nitrates 

NA-Sodium 

K-Potassium 

HCO3-Carbonates 

CL-Chlorides 

Anti-profile 

NA-Sodium 

K-Potassium 

HCO3-Carbonates 

CL-Chlorides 

MG-Magnesium  

 

From a dimension reduction or variable selection 

point of view, we can perform in each of the three 

clusters, a PCA of the variables that characterize it 

significantly, see Table 2. We can then keep only the 

first principal component of each of the three PCAs. 

We thus end up with three synthetic variables of the 

clusters. For comparison, Figs. 4 and 5 show 

dendrograms of other variables clustering approaches. 

Note that for a partition in 3 clusters, the constitution 

of the clusters is the same except for the Varclus 

approach. 

Table 3 presents the percentages of the total variance 

explained by the 3-cluster partition of the different 

approaches. The percentage of the TCV approach is 

much higher than the percentages of the other four 

approaches, so the TCV clusters are more 

homogeneous. 

For comparison, Figs. 4 and 5 show dendrograms of 

other variables clustering approaches. Note that for a 

partition in 3 clusters, the constitution of the clusters is 

the same except for the Varclus approach. 
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Table 3 presents the percentages of the total variance 

explained by the 3-cluster partition of the different 

approaches. The percentage of the TCV approach is 

much higher than the percentages of the other four 

approaches, so the TCV clusters are more 

homogeneous. 

Fig. 4  Varclus and ClustOfVar dendrograms. 

 

  
Fig. 5  CVLC and Clustatis dendrograms. 

 

Table 3  Comparison criteria. 

Clustering approach TCV Varclus CVLC Clustatis ClustOfVar 

R2: Variance explained (%) 93.06 83.72 73.43 73.43 68.78 

 

4.2 Case of a Set of Qualitative Variables 

To illustrate our approach from a set of qualitative 

variables, we consider a study on female 

entrepreneurship conducted in Dakar Senegal in 2014. 

The data displayed in Table 4 have been collected from 

153 female of Dakar region. The objective here is to 

provide a topological clustering of the demographic 

characteristics of the female entrepreneurs. 

In Fig. 6, we can see the adjacency matrix 𝑉𝑢∗
 

associated to the best adapted proximity measure 𝑢∗ to 

the considered data established from the profile Table 

7 given in Appendix, according to Definition 2. 

 



A Topological Clustering of Variables 

  

9 

Table 4  Burt table — female entrepreneurship in Dakar, Senegal. 

Modality Variable Age Marital status Number of children Level of study 

Under 25 22 0 0 18 2 1 1 13 3 6 3 1 18 

25 to 50 years 0 80 0 16 9 21 34 14 11 55 58 5 17 

Over 50 0 0 51 3 8 24 16 8 35 8 30 10 11 

Single 18 16 3 37 0 0 0 20 3 14 9 1 27 

Divorcee 2 9 8 0 19 0 0 3 10 6 13 5 1 

Monogamous bride 1 21 24 0 0 46 0 7 21 18 26 5 15 

Polygamous bride 1 34 16 0 0 0 51 5 15 31 45 5 3 

No children 13 14 8 20 3 7 5 35 0 0 11 5 19 

From 1 to 3 children 3 11 35 3 10 21 15 0 49 0 27 9 13 

More than 3 children 6 55 8 14 6 18 31 0 0 69 53 2 14 

Illiterate-Primary 3 58 30 9 13 26 43 11 27 53 91 0 0 

Secondary 1 5 10 1 5 5 5 5 9 2 0 16 0 

Higher 18 17 11 27 1 15 3 19 13 14 0 0 46 
 

 

Fig. 6  TCV: The demographic characteristics of women entrepreneurs. 
 

The representation on the first principal plane of 

TMCA gives a first view of the linked groups of 

modalities, then, a Ward’s HAC was performed on the 

TMCA principal components. 

Fig. 7 shows the dendrogram of the thirteen 

demographic characteristics of the female 

entrepreneurs. We choose according the dendrogram to 

cut this hierarchical tree into 3 clusters. 
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Fig. 7  TCV: Dendrogram of the demographic characteristics of women entrepreneurs. 

 

Fig. 8 shows the hierarchical dendrogram obtained 

by the Corresp and luster procedures of SAS software, 

its percentage of total explained inertia 32:90%) is 

much lower than that of the TCV approach (87:64%) 

for a partition into 3 clusters.  

Fig. 9 is given as an indication and not for 

comparison, the ClusOfVar approach partitions the 

qualitative variables and not the modalities of the 

variables as is the case with the TCV and Cluster 

approaches. 

4.3 Case of a Set of Mixed Variables 

In some real data situations, variables of a thematic 

are measured on different scales with at a mixture of 

quantitative and qualitative variables. To illustrate this 

approach, we take the data published in [16], they cover 

a sample of 27 small cars of the Belgian market. We 

have a homogeneous theme of nine mixed variables of 

which six quantitative and three qualitative 

characteristics totaling nine modalities. 
 

 

Fig. 8  CLUSTER — tree diagram of the demographic characteristics of women entrepreneurs. 
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We have a homogeneous theme of nine mixed 

variables of which six quantitative and three qualitative 

characteristics totaling nine modalities. 

The objective here is to synthesize simultaneously in 

the sense of correlations all of these mixed 

characteristics. Table 5 summarizes the elementary 

statistics of the mixed variables. 
 

 
Fig. 9  ClusOfVar - Tree Diagram of the demographic characteristics of women entrepreneurs. 

 

Table 5  Summary Statistics and frequency distributions. 

Quantitative variable Frequency Mean Std Dev (N) Minimum Maximum 

Urban Consumption 27 7.14 1.12 5.60 9.30 

Cubic Capacity 27 1165.63 204.17 903.00 1597.00 

Maximum Speed 27 154.26 21.94 115.000 200.00 

Boot Volume 27 901.41 301.67 202.00 1200.00 

Weight/Power 27 18.65 5.42 10.20 33.10 

Length 27 3.62 0.07 3.40 3.70 

Qualitative variable Modality Frequency Frequency Cumulative Frequency Cumulative Percent 

Horsepower 

HP4 13 48.15 13 48.15 

HP5 5 18.52 18 66.67 

HP6 9 33.33 27 100.00 

Brand Country Manufacturer 
French 10 37.04 10 37.04 

Foreign 17 62.96 27 100.00 

 

Price1 10 37.04 10 37.04 

Price2 5 18.52 15 55.56 

Price3 8 29.63 23 85.19 

Price4 4 14.81 27 100.00 
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Fig. 10 gives the adjacency matrix 𝑉𝑢∗
 associated to 

the adapted proximity measure 𝑢∗ for the considered 

data, build from the correlation matrix, see Table 9 

given in Appendix, according to Definition 1. The 

correlation circle of the two first TPCA factors gives an 

overview of groups of correlated and uncorrelated 

quantitative and modalities of qualitative variables. An 

HAC according to Ward’s criterion is then applied on 

the TPCA components represented by the dendrogram 

of the characteristics of small cars on the Belgian 

market presented in Fig. 11. 

The TCV percentage of total explained inertia is 

equal to 78.94% for the partition into 4 classes.  

Fig. 12 presents, as an indication and not for 

comparison, the tree diagram of hierarchical clusters of 

the ClustOfVar approach; the latter considers the 

qualitative variables and not their modalities. 

 

 

Fig. 10  Representation of the cars characteristics. 

 

 
Fig. 11  TCV - Car characteristics dendrogram. 
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Fig. 12  ClusOfVar — Car characteristics dendrogram. 

5. Conclusion 

This paper proposes a new topological method of 

clustering of variables which enriches the methods of 

data analysis within the framework of the clustering of 

a set of quantitative or qualitative variables or a mixture 

of both. The results the proposed topological approach 

of classifying variables, based on the notion of 

neighborhood graph, are as well as good, or event better 

according to the R square than those of the existing 

methods. This approach is easily implemented on SAS, 

SPAD or R software. Future work consists in extending 

this topological approach to other methods of data 

analysis, in particular in the context of evolutionary 

data analysis, both in the concept of a factorial analysis 

and that of a clustering as well individuals and variables. 
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Appendix 

Table 6  Pearson correlation matrix (p-values). 

Variable CA MG NA K SULF NO3 HCO3 CL 

CA 1.0000        

MG 
0.6672 

1.0000 

      

(< :0001)       

NA 
0.0042 0.5649 

1.0000 

     

(0.9757) (< :0001)      

K 
0.1072 0.6703 0.8817 

1.0000 

    

(0.4358) (< :0001) (< :0001)     

SULF 
0.8997 0.5629 -0.0957 -0.0546 

1.0000 

   

(< :0001) (< :0001) 0.4872 0.6923    

NO3 
-0.0473 -0.1756 -0.0830 -0.1529 -0.1288 

1.0000 

  

(0.7317) (0.1998) 0.5469 0.2650 0.3486   

HCO3 
0.1491 0.6583 0.9474 0.8866 -0.0573 -0.0541 

1.0000 

 

0.2774 (< :0001) (< :0001) (< :0001) 0.6776 0.6947  

CL 
0.0578 0.52094 0.5646 0.7187 -0.0276 -0.1053 0.4794 

1.0000 
0.6749 (< :0001) (< :0001) (< :0001) 0.8406 0.4443 (0.0002) 

 

Table 7  Row and average profiles. 

Row-Profiles Age Marital status Number of children Level of study 

Under 25 years 0.25  0 0 0.205 0.023 0.011 0.011 0.148 0.034 0.068 0.034 0.011 0.205 

25 to 50 years 0  0.25 0 0.050 0.028 0.066 0.106 0.044 0.034 0.172 0.181 0.016 0.053 

Over 50 years 0  0 0.25 0.015 0.039 0.118 0.078 0.039 0.172 0.039 0.147 0.049 0.054 

Single 0.122  0.108 0.020 0.25 0 0 0 0.135 0.020 0.095 0.061 0.007 0.182 

Divorcee 0.026  0.118 0.105 0 0.25 0 0 0.040 0.132 0.079 0.171 0.066 0.013 

Monogamous bride 0.005  0.114 0.130 0 0 0.25 0 0.038 0.114 0.098 0.141 0.027 0.082 

Polygamous bride 0.005  0.167 0.078 0 0 0 0.25 0.025 0.074 0.152 0.211 0.025 0.015 

No children 0.093  0.100 0.057 0.143 0.021 0.050 0.036 0.25 0 0 0.079 0.036 0.136 

From 1 to 3 children 0.015  0.056 0.179 0.015 0.051 0.107 0.077 0 0.25 0 0.138 0.046 0.066 

More than 3 children 0.022  0.199 0.029 0.051 0.022 0.065 0.112 0 0 0.25 0.192 0.007 0.051 

Illiterate-Primary 0.008  0.159 0.082 0.025 0.036 0.071 0.118 0.030 0.074 0.146 0.25 0 0 

Secondary 0.016  0.078 0.156 0.016 0.078 0.078 0.078 0.078 0.141 0.031 0 0.25 0 

Superior 0.098  0.092 0.060 0.147 0.005 0.082 0.016 0.103 0.071 0.076 0 0 0.25 

Average profile 0.036  0.131 0.083 0.061 0.031 0.075 0.083 0.057 0.080 0.113 0.149 0.026 0.075 
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Table 8  Some proximity measures for continuous and binary data. 
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Table 9  Pearson correlation matrix (p-values). 
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Consumption 1.0000 

              

              

Cubic 

Capacity 

0.7965 

1.0000 

             

<.0001              

Speed 

0.7804 0.8322 

1.0000 

            

<.0001 <.0001             

Volume 

0.2946 0.1125 0.0220 

1.0000 

           

0.1358 0.5766 0.9134            

Weight / 

Power 

-

0.6824 

-

0.7788 

-

0.9376 
0.1020 

1.0000 

          

<.0001 <.0001 <.0001 0.6127           

Length 
0.1965 0.2897 0.1552 

-

0.0734 

-

0.0977 
1.0000 

         

0.3258 0.1427 0.4396 0.7161 0.6280          

HP4 

-

0.5481 

-

0.8376 

-

0.6602 

-

0.1048 
0.6091 

-

0.3058 
1.0000 

        

0.0031 <.0001 0.0002 0.6031 0.0007 0.1208         

HP5 

-

0.3819 
0.0611 

-

0.1447 

-

0.2655 
0.1083 0.1650 

-

0.4594 
1.0000 

       

0.0494 0.7621 0.4714 0.1807 0.5909 0.4109 0.0159        

HP6 

0.8956 0.8375 0.8190 0.3298 
-

0.7348 
0.1882 

-

0.6814 

-

0.3371 
1.0000 

      

<.0001 <.0001 <.0001 0.0930 <.0001 0.3472 <.0001 0.0855       

French 

-

0.0938 
0.0431 

-

0.1000 
0.4093 0.2039 0.1488 

-

0.1251 
0.2267 

-

0.0542 
1.0000 

     

0.6415 0.8310 0.6198 0.0340 0.3077 0.4589 0.5342 0.2555 0.7882      

Foreign 

0.0938 
-

0.0431 
0.1000 

-

0.4093 

-

0.2039 

-

0.1488 
0.1251 

-

0.2267 
0.0542 

-

1.0000 
1.0000 

    

0.6415 0.8310 0.6198 0.0340 0.3077 0.4589 0.5342 0.2555 0.7882 <.0001     

Price1 

-

0.4020 

-

0.6767 

-

0.6035 

-

0.0110 
0.5475 

-

0.4024 
0.7959 

-

0.3656 

-

0.5423 

-

0.1118 
0.1118 

1.0000 

   

0.0376 0.0001 0.0009 0.9568 0.0031 0.0374 <.0001 0.0607 0.0035 0.5789 0.5789    

Price2 

-

0.3904 

-

0.2901 

-

0.2969 

-

0.1015 
0.3086 0.1254 0.1131 0.2636 

-

0.3371 
0.2267 

-

0.2267 

-

0.3656 
1.0000 

  

0.0441 0.1422 0.1327 0.6145 0.1173 0.5330 0.5744 0.1839 0.0855 0.2555 0.2555 0.0607   

Price3 
0.2465 0.4807 0.3251 

-

0.0232 

-

0.3901 
0.2313 

-

0.6253 
0.3171 0.4015 

-

0.3297 
0.3297 

-

0.4977 

-

0.3093 
1.0000 

 

0.2151 0.0112 0.0980 0.9086 0.0443 0.2458 0.0005 0.1071 0.0379 0.0931 0.0931 0.0083 0.1164  

Price4 

0.6565 0.6191 0.7270 0.1557 
-

0.5803 
0.1126 

-

0.4019 

-

0.1988 
0.5898 0.3278 

-

0.3278 

-

0.3199 

-

0.1988 

-

0.2706 
1.0000 

0.0002 0.0006 <.0001 0.4382 0.0015 0.5760 0.0377 0.3202 0.0012 0.0950 0.0950 0.1039 0.3202 0.1722 

 

 

 


